翻訳と辞書
Words near each other
・ -drome
・ -eaux
・ -ever
・ -fold
・ -free
・ -friendly
・ -GEMINI-
・ -hungry
・ -I'll-
・ -I.C.U.-
・ -Inf
・ -intensive
・ -ky
・ -laden
・ -logy
・ -meter
・ -mode
・ -mosaic-
・ -MOTTO-
・ -much


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

-Inf ( リダイレクト:無限 ) : ウィキペディア日本語版
無限[むげん]

無限(むげん、infinity)とは、限りの無いことである。
直感的には「限界を持たない」というだけの単純に理解できそうな概念である一方で、直感的には有限な世界しか知りえないと思われる人間にとって、無限というものが一体どういうことであるのかを厳密に理解することは非常に難しい問題を含んでいる。このことから、しばしば哲学論理学、あるいは自然科学などの一部の分野において考察の対象として無限という概念が取り上げられ、そして深い考察が得られている。
本項では、数学などの学問分野において、無限がどのように捉えられ、どのように扱われるのかを記述する
== 無限に関する様々な数学的概念 ==

* 無限大 :記号∞ (アーベルなどはこれを 1 / 0 のように表記していた)で表す。 大雑把に言えば、いかなる数よりも大きいさまを表すものであるが、より明確な意味付けは文脈により様々である。例えば、どの実数よりも大きな(実数の範疇からはずれた)ある特定の“数”と捉えられることもある(超準解析や集合の基数など)し、ある変量がどの実数よりも大きくなるということを表すのに用いられることもある(極限など)。無限大をある種の数と捉える場合でも、それに適用される計算規則の体系は1つだけではない。実数の拡張としての無限大には ∞ (+∞) と −∞ がある。大小関係を定義できない複素数には無限大の概念はないが、類似の概念として無限遠点を考えることができる。また、計算機上では(本来なら考えない数だが)たとえば「∞+i」のような数を扱えるものも多い。
* 無限小 (infinitesimal): (0を除く)いかなる数よりも(その絶対値が)小さな数ととられることもある記号あるいは拡張された数。無限大と同じく、これは1つの数を表すものではなく、限りなく小さくなりうる変数と考える。微分積分学における ''dx'' などの記号は、これが無限小であるとする考え方は、19世紀を通じて否定されるようになったが、20世紀後半からは、超準解析の立場から見直されるようになった。
感覚的には分かり易いと思われる直観的な無限大・無限小の概念ではあるが、現代的な実数論には直接的には存在しない(いわゆる ε-δ 論法によって量的に扱われる)。一方で、超準解析などにおいては数学的に定式化され、その存在を肯定される。
* 無限遠点ユークリッド空間平行に走るが、交差するとされる空間外のあるいは拡張された空間における無限遠の点。平行な直線のクラスごとに1つの無限遠点があるとする場合は射影空間が得られる。この場合、無限遠点の全体は1つの超平面(無限遠直線、無限遠平面 etc.)を構成する。また全体でただ1つの無限遠点があるとする場合は(球面が得られる。複素平面に1つの無限遠点 ∞ を追加して得られるリーマン球面は理論上きわめて重要である。無限遠点をつけ加えてえられる射影空間や超球面はいずれもコンパクトになる。
* 無限集合有限集合(その要素の数が有限である集合)でない集合
 * 可算無限集合自然数全体 N からの全単射が存在する、すなわち数え上げ可能な無限集合。整数の全体、有理数の全体、代数的数の全体などはそうである。
 * 非可算集合: 自然数全体 N からの全単射が存在しない、すなわち数え上げ不可能な無限集合。実数の全体、複素数の全体などはそうである。
* 無限小数: その小数表示が有限の桁ではない数。
* 無限列: 数(あるいは点などの要素)に番号を付けて無限に並べたもの、つまり長さが無限の数列、点列など。より厳密には自然数全体の集合 N 上で定義される写像

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「無限」の詳細全文を読む

英語版ウィキペディアに対照対訳語「 Infinity 」があります。




スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.