|
===================================== 〔語彙分解〕的な部分一致の検索結果は以下の通りです。 ・ ー : [ちょうおん] (n) long vowel mark (usually only used in katakana)
ゲージ理論では、ウィルソンループ(Wilson loop)(ケネス・ウィルソン(Kenneth G. Wilson)に因む)は、ゲージ不変な観測量を与えられたループのゲージ接続の(holonomy)から得る。古典論では、ウィルソンループの集まりは、ゲージ変換を同一視したゲージ接続を再構成する十分な情報を構成する。 場の量子論では、ウィルソンループ観測量の定義は、フォック空間上の「(bona fide)」作用素である。(実際、(Haag's theorem)は、フォック空間は相互作用のある QFT に対しては存在しないという定理がある。)この定義は、数学的にはデリケートな問題であり、通常はフレーミングを持つ各々のループを備えた繰り込みが要求される。ウィルソン作用素の作用は、量子ばの基本励起を作り出すことを解釈され、量子場はループへ局所化される。このようにして、マイケル・ファラデェー(Michael Faraday)の「フラックスチューブ」は量子電磁気場の基本励起となる。 ウィルソンループは、1970年代に量子色力学 (QCD) の非摂動的定式化の試み、少なくとも QCD の強い相互作用の領域を扱う一連の変数記法として導入された。ウィルソンループは、クォークの閉じ込めの問題を解くことを意図し考案されたが、今日、未解決のままである。 強い相互作用を持つ量子場理論は、基本的な非摂動的励起をもっているという事実は、(Alexander Polyakov)により、最初の弦理論を定式化するために提唱された。これは時空での基本量子のループの伝播を記述している。 ウィルソンループはループ量子重力理論の定式化で重要な役割を果たすが、そこでは、スピンネットワークに取って変わられ(後日、(spinfoam)となった)、ウィルソンループの一種の一般化となっている。 素粒子物理学と弦理論において、ウィルソンループ、特にコンパクト多様体の非可縮なループの周りのウィルソンループは、ウィルソンライン(Wilson lines)とよく言われる。 == 方程式 == ウィルソンライン(Wilson line)変数 (あるいは、ウィルソンループ(Wilson loop)変数のほうがよいが、)、常に閉曲線として扱うので、C に沿って動くゲージ場 の(path-ordered exponential)のトレースにより定義された次の量である。 : ここに、 は空間内の閉曲線であり、 は(path-ordering)作用素である。ゲージ変換 :, であり、ここに は、ループの単に起点と終点に対応する(ラインの起点と終点のみが寄与することに対し、間にあるゲージ変換は互いにキャンセルする)。たとえば、SU(2) ゲージに対し、 となる。 は の任意の実函数であり、 は 3つのパウリ行列(Pauli matrices)で、和は通常の繰り返しのインデックスを渡る和を意味する。
|