|
===================================== 〔語彙分解〕的な部分一致の検索結果は以下の通りです。 ・ 条件 : [じょうけん] 【名詞】 1. conditions 2. terms ・ 件 : [くだん, けん] 【名詞】 1. matter 2. case 3. item
数学の分野におけるノイマン境界条件(のいまんきょうかいじょうけん、)あるいは第2種境界条件とは、数学者のの名にちなむ境界条件のことである〔Cheng, A. and D. T. Cheng (2005). Heritage and early history of the boundary element method, ''Engineering Analysis with Boundary Elements'', 29, 268–302.〕。常微分方程式あるいは偏微分方程式に対し、その解の微分が定義域の境界でとる値を定める。 例えば、常微分方程式 : に対し、定義域 上のノイマン境界条件は次のような形をとる: : ここで α および β は与えられた数である。 別の例では、偏微分方程式 : (ただし、∇2 はラプラシアンを表す)に対し、定義域 上のノイマン境界条件は次のような形をとる: : ここで ''n'' は境界 ∂Ω への法線ベクトルを表し、''f'' は与えられたスカラー関数である。 上式の左辺に現れるは : で定義される。ここで ∇ はグラディエント(ベクトル)を表し、中点は内積を表す。 熱伝導の問題において、定義域の境界から熱の出入りが全く無いという状況に出くわすことはよくある(すなわち、定義域は完全に断熱されている)。これは、法線微分がゼロであるようなノイマン境界条件に対応する。 ノイマン境界条件の他にも多くの境界条件が存在する。例えば、コーシー境界条件や、ノイマンとディリクレの条件が組み合わされた混合境界条件などがある。'n'' は境界 ∂Ω への法線ベクトルを表し、''f'' は与えられたスカラー関数である。 上式の左辺に現れるは : で定義される。ここで ∇ はグラディエント(ベクトル)を表し、中点は内積を表す。 熱伝導の問題において、定義域の境界から熱の出入りが全く無いという状況に出くわすことはよくある(すなわち、定義域は完全に断熱されている)。これは、法線微分がゼロであるようなノイマン境界条件に対応する。 ノイマン境界条件の他にも多くの境界条件が存在する。例えば、コーシー境界条件や、ノイマンとディリクレの条件が組み合わされた混合境界条件などがある。' は境界 ∂Ω への法線ベクトルを表し、''f'' は与えられたスカラー関数である。 上式の左辺に現れるは : で定義される。ここで ∇ はグラディエント(ベクトル)を表し、中点は内積を表す。 熱伝導の問題において、定義域の境界から熱の出入りが全く無いという状況に出くわすことはよくある(すなわち、定義域は完全に断熱されている)。これは、法線微分がゼロであるようなノイマン境界条件に対応する。 ノイマン境界条件の他にも多くの境界条件が存在する。例えば、コーシー境界条件や、ノイマンとディリクレの条件が組み合わされた混合境界条件などがある。 ==参考文献== 〔 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「ノイマン境界条件」の詳細全文を読む 英語版ウィキペディアに対照対訳語「 Neumann boundary condition 」があります。 スポンサード リンク
|