|
(n) isosceles triangle =========================== ・ 二 : [に] 1. (num) two ・ 二等 : [にとう] (n) second class ・ 二等辺三角形 : [にとうへんさんかくけい, にとうへんさんかっけい] (n) isosceles triangle ・ 等 : [など] 1. (suf) and others 2. et alia 3. etc. (ら) ・ 等辺 : [とうへん] (n) equal sides ・ 等辺三角形 : [とうへんさんかっけい] (n) isosceles triangle ・ 辺 : [へん] 【名詞】 1. (1) area 2. vicinity 3. (2) side (of triangle, rectangle, etc.) 4. (3) circumstances ・ 三 : [み] 1. (num) three ・ 角 : [つの] 【名詞】 1. horn ・ 形 : [けい, かたち, ぎょう] 1. (suf) shape 2. form 3. type
二等辺三角形(にとうへんさんかくけい、)は、三角形の一種で、3 本の辺のうち(少なくとも)2 本の辺の長さが等しい図形である。長さの等しい 2 辺を等辺といい、残りの 1 辺を底辺とよぶ。2 本の等辺が共有する頂点をとくに二等辺三角形の頂点という。頂点における内角を、二等辺三角形の頂角といい、残りの 2 つの内角すなわち底辺の両端の内角を底角とよぶ。二等辺三角形の底角は、互いに等しい大きさを持つ。 頂角は180°未満の大きさであるが、底角は90°未満の大きさに限られる。二等辺三角形は線対称な図形であり、頂点と底辺の中点 を結ぶ中線、頂角の二等分線、底辺の垂直二等分線、これらはすべて線対称の対称軸に乗る。二等辺三角形の頂角の二等分線は底辺を垂直に二等分する。 三角形の 3 つの内角のうち(少なくとも)2 つの角が等しいものは、二等辺三角形となる(二等辺三角形の成立条件)。 また、対称軸を持つ三角形は二等辺三角形に限られる。 二等辺三角形のうち、3 本の辺の長さが全て等しい三角形は正三角形という。正三角形は、二等辺三角形の特殊な場合である。正三角形の内角はすべて等しく、その大きさは 60° に等しい。すべての正三角形は、互いに相似である。 頂角が直角である二等辺三角形は直角二等辺三角形とよばれる。直角二等辺三角形の 2 つの底角(2 つの鋭角)は 45°である。すべての直角二等辺三角形は、互いに相似である。 この項では一般的な二等辺三角形について述べる。 同じ大きさの頂角を持つ二等辺三角形は全て互いに相似である。 また、同じ大きさの底角を持つ二等辺三角形は全て互いに相似である。 線分の両側に、これを底辺とする 2 つの二等辺三角形を作って並べると、凧形ができる。とくに、2 つの二等辺三角形が合同である場合、菱形ができる。逆に、菱形や凧形を対角線で2つに分けて、二等辺三角形を作ることができる。特に、正方形を 1 本の対角線で 2 つに分けると、直角二等辺三角形が得られる。 正n角形の重心から各頂点に線分を引くとn個の二等辺三角形ができる。 扇形の中心角を限りなく小さくすると二等辺三角形に近づく。 二等辺三角形を対称軸を中心として半回転させると円錐ができる。円錐の投影図のうち、立面図は二等辺三角形である。 角錐のうち底面が正多角形でその重心の真上に頂点のあるものは、二等辺三角形からなる側面を持つ。 ==関連項目== * 三角形 * 正三角形 * 直角二等辺三角形 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「二等辺三角形」の詳細全文を読む スポンサード リンク
|