|
===================================== 〔語彙分解〕的な部分一致の検索結果は以下の通りです。 ・ 幾 : [ほとほと] 1. (adv) quite 2. greatly ・ 幾何 : [きか] 【名詞】 1. geometry ・ 幾何学 : [きかがく] 【名詞】 1. geometry ・ 何 : [なん] 1. (int,n) what ・ 学 : [がく] 【名詞】 1. learning 2. scholarship 3. erudition 4. knowledge ・ 的 : [まと, てき] 【名詞】 1. mark 2. target ・ 不 : [ふ] 1. (n-pref) un- 2. non- 3. negative prefix ・ 不変 : [ふへん] 1. (adj-na,n,adj-no) eternal 2. everlasting 3. unchangeable 4. immutable 5. immovable 6. constant 7. permanent 8. indestructible ・ 変 : [へん] 1. (adj-na,n) change 2. incident 3. disturbance 4. strange 5. flat (music) 6. odd 7. peculiar 8. suspicious-looking 9. queer 10. eccentric 1 1. funny 1 ・ 式 : [しき] 1. (n,n-suf) (1) equation 2. formula 3. expression 4. (2) ceremony 5. (3) style ・ 論 : [ろん] 【名詞】 1. (1) argument 2. discussion 3. dispute 4. controversy 5. discourse 6. debate 7. (2) theory 8. doctrine 9. (3) essay 10. treatise 1 1. comment
数学では、幾何学的不変式論(Geometric invariant theory)(もしくは、GIT)は、代数幾何学でモジュライ空間を構成に使用する目的で、群作用による商を構成する方法である。幾何学的不変論は、デヴィッド・マンフォード(David Mumford)により、1965年、古典的(invariant theory)での論文 のアイデアを使って開発された。 幾何学的不変式論は、代数多様体(もしくは、スキーム)上の群 G による群作用を研究し、合理的な性質を持つスキームとして G による X の「商」を構成するテクニックをもたらす。動機の一つは、代数幾何学でのモジュライ空間を、マークされた対象をパラメトライズするスキームの商として構成することにあった。1970年代と1980年代には、シンプレクティック幾何学や(equivariant topology)と相互作用しながら発展し、(instanton)や(monopoles)のような微分幾何学での対象のモジュライ空間の構成に使われた。 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「幾何学的不変式論」の詳細全文を読む スポンサード リンク
|