翻訳と辞書
Words near each other
・ 零ファイター撃墜戦記
・ 零ベクトル
・ 零下
・ 零位法
・ 零余子
・ 零元
・ 零八憲章
・ 零切断
・ 零列空間
・ 零化イデアル
零化域
・ 零号作戦
・ 零和
・ 零和ゲーム
・ 零因子
・ 零士
・ 零士 (小惑星)
・ 零売
・ 零対象
・ 零射


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

零化域 : ミニ英和和英辞書
零化域[れい]
=====================================
〔語彙分解〕的な部分一致の検索結果は以下の通りです。

: [れい]
 【名詞】 1. zero 2. nought 
: [か]
 (suf) action of making something
: [いき]
 【名詞】 1. region 2. limits 3. stage 4. level

零化域 ( リダイレクト:零化イデアル ) : ウィキペディア日本語版
零化イデアル[れいかいである]
数学、特に加群論において、集合の零化イデアルあるいは零化域()はねじれ直交性を一般化した概念である。
== 定義 ==
''R'' をとし、''M'' を左 ''R''-加群とする。''M'' の空でない部分集合 ''S'' をとる。''S'' の零化イデアル (annihilator) は ''S'' の任意の元 ''s'' に対して であるような ''R'' のすべての元 ''r'' からなる集合であり、Ann''R''(''S'') と表記される〔Pierce (1982), p. 23.〕。集合の表記では
:\mathrm_R(S)=\\,
これは ''S'' を「零化する」(annihilate) ''R'' のすべての元(''S'' が torsion であるような元)の集合である。右加群の部分集合に対しても、""という修正をして同様に定義される。
1つの元 ''x'' の零化イデアルは普通 Ann''R''() の代わりに Ann''R''(''x'') と書かれる。環 ''R'' が文脈からわかる場合には、添え字 ''R'' は落としてもよい,
''R'' はそれ自身の上の加群であるので、''S'' は ''R'' 自身の部分集合ととってもよく、''R'' は右と左両方の ''R'' 加群であるので、左と右どちら側なのかを示すために表記を少し修正しなければならない。その必要があるときには通常 \ell.\mathrm_R(S)\,r.\mathrm_R(S)\, あるいは類似の添え字が左と右の零化イデアルを区別するために使われる。
''M'' が ''R''-加群で であれば、''M'' は忠実加群(faithful module)と呼ばれる。

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「零化イデアル」の詳細全文を読む




スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.