|
モンティ・ホール問題(モンティ・ホールもんだい、''Monty Hall problem'')は確率論の問題で、ベイズの定理における事後確率、あるいは主観確率の例題のひとつとなっている。モンティ・ホール (Monty Hall、本名 Monte Halperin) が司会者を務めるアメリカのゲームショー番組、「Let's make a deal」の中で行われたゲームに関する論争に由来する。 一種の心理トリックになっており、確率論から導かれる結果を説明されても、なお納得しない者が少なくないことから、ジレンマあるいはパラドックスとも称される。「直感で正しいと思える解答と、論理的に正しい解答が異なる問題」の適例とされる。 なお、モンティ・ホール問題と実質的に同型である「3囚人問題」については、かつて日本で精力的に研究された。 == 概要 == 「プレーヤーの前に閉まった3つのドアがあって、1つのドアの後ろには景品の新車が、2つのドアの後ろには、はずれを意味するヤギがいる。プレーヤーは新車のドアを当てると新車がもらえる。プレーヤーが1つのドアを選択した後、司会のモンティが残りのドアのうちヤギがいるドアを開けてヤギを見せる。 ここでプレーヤーは、最初に選んだドアを、残っている開けられていないドアに変更してもよいと言われる。プレーヤーはドアを変更すべきだろうか?」 1990年9月9日発行、ニュース雑誌 ''Parade'' にて、マリリン・ボス・サヴァントが連載するコラム欄「マリリンにおまかせ」において上記の読者投稿による質問に「正解は『ドアを変更する』である。なぜなら、ドアを変更した場合には景品を当てる確率が2倍になるからだ」と回答した。すると直後から、読者からの「彼女の解答は間違っている」との約1万通の投書が殺到し、本問題は大議論に発展した。 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「モンティ・ホール問題」の詳細全文を読む 英語版ウィキペディアに対照対訳語「 Monty Hall problem 」があります。 スポンサード リンク
|