翻訳と辞書
Words near each other
・ アフィン・カッツ・ムーディ・リー環
・ アフィン・スキーム
・ アフィン・リー代数
・ アフィン・リー環
・ アフィン写像
・ アフィン包
・ アフィン変換
・ アフィン変換群
・ アフィン多様体
・ アフィン接続
アフィン空間
・ アフィン結合
・ アフィン群
・ アフィー
・ アフェア
・ アフェク
・ アフェクショネイトリー
・ アフェクトダンサー
・ アフェト・イナン
・ アフェライ


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

アフィン空間 : ウィキペディア日本語版
アフィン空間[あふぃんくうかん]
数学において、アフィン空間(あふぃんくうかん、, アファイン空間とも)または擬似空間(ぎじくうかん)とは、幾何ベクトルの存在の場であり、ユークリッド空間から絶対的な原点座標と標準的な長さや角度などといった計量の概念を取り除いたアフィン構造を抽象化した幾何学的構造である。(代数的な)ベクトル空間からどの点が原点であるかを忘れたものと考えることもできる。
== 大まかな説明 ==
アフィン空間では点の差としてベクトルを得たり、点にベクトルを加えて他の点を得たりすることはできるが、点をくわえることはできない。また特に、どの点が原点を与えるのかを認識することができない。
以下の特徴づけは形式的な定義よりは判りやすいだろう。アフィン空間はベクトル空間からどの点が原点であるかを忘れた後に残るもののことである(数理物理学者ジョン・バエズの言によれば「アフィン空間とは原点を忘れてしまったベクトル空間のことである」)。太郎さんは本当の原点 O が何処なのか知っていて、権兵衛さんは別の P と呼ばれる点が原点だと思っているという状況を想像してみよう。ふたつのベクトル
: \mathbf = \overrightarrow,\, \mathbf = \overrightarrow
を加えるというとき、権兵衛さんは自分の思う a + b を求めるために、P から A へ矢印を引き、P から B へ別の矢印を引いてできる平行四辺形の対角線を考えることになるわけだが、太郎さんはそれが実際には
: \mathrm + \overrightarrow + \overrightarrow
であることを知っている。同様に、ab(あるいはもっと多くの有限個のベクトルの集合)の任意の線型結合について評価を行ったき、太郎さんと権兵衛さんは一般には異なる答えを導き出すことになるが、それでも
: その線型結合の係数の和が 1 であるような場合には、太郎さんと権兵衛さんの答えは一致する
ということについてはよく注意しなければならない。この話の「落ち」は、権兵衛さんは「アフィン構造」(つまり係数の和が 1 の線型結合として定義されるアフィン結合の値)しか知らないが、太郎さんは「線型構造」と「アフィン構造」の両方を知っているということにある。台集合にアフィン構造を考えたものがアフィン空間なのである。

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「アフィン空間」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.