|
数学におけるシンプレクティック多様体(symplectic manifold)は、シンプレクティック形式と呼ばれる非退化な閉形式である 2-形式を持つ滑らかな多様体である。シンプレクティック多様体の研究分野はシンプレクティック幾何学やシンプレクティックトポロジーと呼ばれる。シンプレクティック多様体は、古典力学の抽象的定式化であるハミルトン力学などにおいて多様体の余接バンドルとして自然に表れるもので、この分野に対して大きな動機付けを与えた。実際、系の取り得るすべての配位が成す集合を多様体としてモデル化すると、この多様体は系の相空間を記述する。 シンプレクティック多様体上の微分可能な実数値関数 H は(energy function)を与えることができ、これをハミルトニアンと呼ぶ。どのようなハミルトニアンに対してもハミルトンベクトル場が対応付けられる。ハミルトンベクトル場のはハミルトン方程式の解曲線になる。ハミルトンベクトル場は、シンプレクティック多様体上のフロー(ハミルトンフロー、あるいは、シンプレクティック同相写像と呼ばれる)を定め、リウヴィルの定理によれば、ハミルトンフローは相空間上の体積要素を保存する。 ''(energy function)を与えることができ、これをハミルトニアンと呼ぶ。どのようなハミルトニアンに対してもハミルトンベクトル場が対応付けられる。ハミルトンベクトル場のはハミルトン方程式の解曲線になる。ハミルトンベクトル場は、シンプレクティック多様体上のフロー(ハミルトンフロー、あるいは、シンプレクティック同相写像と呼ばれる)を定め、リウヴィルの定理によれば、ハミルトンフローは相空間上の体積要素を保存する。 == 動機 == :シンプレクティック多様体上の幾何学、その動機である古典力学(解析力学)との関係は、シンプレクティック幾何学も参照のこと。 シンプレクティック多様体は古典力学から発生していて、特に閉じた系の相空間の一般化である。〔Ben Webster: ''What is a symplectic manifold, really?'' http://sbseminar.wordpress.com/2012/01/09/what-is-a-symplectic-manifold-really/〕ハミルトン方程式が一組の微分方程式から系の時間発展を引き出せることと同じように、シンプレクティック形式からはハミルトン函数 H の微分である dH により系のフローを記述するベクトル場を得ることができる。ニュートンの運動方程式は線型微分方程式であるので、その写像も必然的に線型となる。〔Henry Cohn: ''Why symplectic geometry is the natural setting for classical mechanics'' http://research.microsoft.com/en-us/um/people/cohn/thoughts/symplectic.html〕従って、線型写像 T * M → TM、(同じことであるが、 T * M ⊗ T * M の元)が必要となる。ω により T * M ⊗ T * M の切断を表すこととすると、ω が 非退化 であるということは、全ての微分 dH に対して一意にベクトル場 VH が存在し、dH = ω(VH,· ) を満たす。ハミルトニアンが積分曲線に沿って定数であることを要求するので、必然的に dH(VH) = ω(VH, VH) = 0 を得る。このことは ω が 交代的 であり、従って 2-形式であることを意味する。結局、必然的に ω は積分曲線のもとで不変であることとなり、つまり、 ω の VH に沿ったリー微分はゼロとなる。(Cartan's formula)を適用して、次の式を得る。 : この式は、ω が 閉形式 であることを指している。
|