|
ブラック–カラシンスキー・モデル()とは、数理ファイナンスにおける利子率のを表す数理モデルである〔ショートレートモデルを参照せよ〕。ブラック–カラシンスキー・モデルは単一のランダム性のソースにより利子率の変動が記述されるため1ファクターモデルである。さらに、ブラック–カラシンスキー・モデルは無裁定モデルのクラスに属する。つまり、ゼロクーポン債の現在価格にフィットさせることができ、最も一般的な形では、キャップ、フロアー、ヨーロピアンスワップションの現在価格にもフィットさせることが出来る。ブラック–カラシンスキー・モデルはフィッシャー・ブラックとにより1991年に提案された。 ==モデル== ブラック–カラシンスキー・モデルにおける状態変数はショートレートである。このショートレートは(リスク中立測度の下で)以下の確率微分方程式に従うとされる。 : ここで ''dW''''t'' は標準ブラウン運動である。ブラック–カラシンスキー・モデルはショートレートが対数正規分布に従うことを意図しており、ゆえにマネーマーケットアカウントの期待値は全ての満期で発散する。 フィッシャー・ブラックとピョートル・カラシンスキーの元々の論文では、ブラック–カラシンスキー・モデルは二項価格評価モデルを用いて実装されていた。しかし、実践上は三項格子による実装が一般的であり、特にハル–ホワイト格子の対数正規分布に対する応用版が用いられている。 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「ブラック–カラシンスキー・モデル」の詳細全文を読む スポンサード リンク
|