|
プラズマ物理(プラズマぶつり)では、プラズマを理解するのに有用なもろもろの物理的概念を解説する。プラズマの全般的解説については項目プラズマを参照。 == 歴史 == 真空中の放電現象は18世紀に着目されていたが、その後しばらく忘れられていた。1835年ごろ、マイケル・ファラデーが再び真空放電に注目し、それを安定に実現した放電管内の現象を詳しく観察して、グロー、陽光柱などとともにファラデー暗部と呼ばれる構造を見いだした。真空放電の研究はその後、ウィリアム・クルックスなどによって大きく発展し、電子の発見への寄与を始めとして、現代物理学の成立に貢献した。 放電によって生成されたプラズマ自体の研究は1920年代のアーヴィング・ラングミュアに始まる。ラングミュアは1922年から約10年間、気体中の放電現象を研究し、その間にラングミュア探針を開発してプラズマの基本量(密度、温度)の測定手段を確立し、プラズマ振動を発見してその機構を解明する、などの大きな成果をあげ、いわゆるプラズマ物理学を創始した。1928年には放電によって発生した電離した気体に初めて「プラズマ」という名前を与えた。 プラズマ物理学の進展にとって、ブラソフ方程式 (Vlasov equation) の確立が重要である。ブラソフは1945年、プラズマ振動などの現象では個々の荷電粒子間の衝突は無視出来ることを論証し、衝突項を0と置いた運動論的方程式(無衝突ボルツマン方程式)と電磁場のマクスウェル方程式を組み合わせた方程式系でプラズマ振動を記述した。この方程式系はブラソフ方程式と呼ばれ、プラズマの特性にもっとも適合した方程式として広く用いられている。 ついで1946年にレフ・ランダウはブラソフの扱いを改良し、ブラソフ方程式をラプラス変換を用いて解く手法を編み出した。その結果、プラズマ振動にはランダウ減衰と呼ばれる現象があることを示した。このランダウの手法はこんにちのプラズマ理論のもっとも基本的手法として定着している。 プラズマの研究は1950年代から大きく加速した。その原動力はエネルギー源としての熱核融合の研究と宇宙空間物理学の進展である。熱核融合研究は1950年代初頭に始まり、世界的協力のもとで行われてきたが、最近になって熱核融合に必要な条件(1億 ℃ の温度、粒子密度 1020m−3)を満たす核融合プラズマが生成されて科学的実証が達成された。そして、次の段階の「システムとしての核融合炉」が実現可能であることを示す工学的実証を目的として、2005年、国際熱核融合実験炉 (ITER) をフランスに建設することが決まった。 一方、宇宙空間物理学においては、ロケットや人工衛星による探査の進展とともに地球外の空間ではプラズマが極めて重要な役割を演じていることが解ってきて、プラズマのマクロな行動を記述する磁気流体力学が発達し、地球磁気圏の構造の解明などの大きな成果をあげた。 1970年に宇宙空間プラズマの研究者であるハンス・アルヴェーンが「電磁流体力学の基礎研究、プラズマ物理学への応用」によってノーベル物理学賞を受賞した。 そのほかプラズマは、プラズマディスプレイを始めとする数多くの応用によって、日常生活にも密接にかかわってきている。 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「プラズマ物理」の詳細全文を読む スポンサード リンク
|