|
ベイジアンネットワーク()は、因果関係を確率により記述するグラフィカルモデルの1つで、複雑な因果関係の推論を有向非巡回グラフ構造により表すとともに、個々の変数の関係を条件つき確率で表す確率推論のモデルである。ネットワークとは重み付けグラフのこと。 ジューディア・パールが1985年に命名した。ジューディア・パールはこの研究の功績によりチューリング賞を受賞した。 人工知能の分野では、ベイジアンネットワークを確率推論アルゴリズムとして1980年頃から研究が進められ、既に長い研究と実用化の歴史がある。 == 特徴 == 因果的な特徴を有向グラフ(矢印を用いたリンク)によるネットワーク(重み付けグラフ)として表し、その上で確率推論を行うことで、複雑でかつ不確実な事象の起こりやすさやその可能性を予測することができる。これまで蓄積された情報をもとに、起こりうる確率をそれぞれの場合について求め、それらを起こる経路に従って計算することで、複雑な経路を伴った因果関係の発生確率を定量的に表すことが可能となる。ベイジアンネットワークでは、経路については、主に循環するような経路は扱わず、有向非巡回グラフのみを扱うことができる。 有向グラフを用いずに無向グラフで表現する方法は、と呼ばれる。 ベイジアンネットワークにて全ての問題が解けるという訳ではなく、解けない問題の例も提示されているが、今後の基礎的研究により少しずつ適用範囲は拡がるものと予想される。 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「ベイジアンネットワーク」の詳細全文を読む 英語版ウィキペディアに対照対訳語「 Bayesian network 」があります。 スポンサード リンク
|