|
ベルトランの逆説(ベルトランのぎゃくせつ、)は、確率論の古典的解釈において発生する問題である。ジョセフ・ベルトランが著作''Calcul des probabilités''で、確率変数を導入する方法やメカニズムが明確に定義されない場合、確率がうまく定義できない場合があることを示す例として与えた。 ==ベルトランによる問題の定式化== ベルトランのパラドックスは以下のようなものである。 :「円に内接する正三角形を考える。その円の弦を1本無作為に選ぶ。その弦が正三角形の辺よりも長くなる確率はどれだけか?」 ベルトランはこれに関して3つの主張を述べた。どれももっともらしく見えるが、結果は異なるものとなる。 #「無作為な端点」方式 円周上の2点を無作為に選び、それらを結ぶ弦を考える。問題の確率を計算するために、正三角形を回転させ、1つの頂点が選ばれた点の1つに一致するようにする。もしもう一方の端点が、正三角形の他の2頂点を結んだ弧の上にあれば、弦は正三角形の1辺よりも長いことが分かる。この弧の長さは円周の3分の1なので、求める確率は3分の1である。 #「無作為な半径」方式 円の半径を1本無作為に選び、さらにその上の1点を無作為に選んで、選ばれた点を通り選ばれた半径に垂直な弦を考える。問題の確率を計算するために、正三角形を回転させ、1辺が半径に垂直になるようにする。選ばれた点が、辺と半径との交点より中心に近ければ、弦は1辺より長い。この辺は半径の中点を通るので、求める確率は2分の1である。 #「無作為な中点」方式 円の内部の点を無作為に選び、それが中点となるような弦を考える。もし選ばれた点が、与えられた円と中心が同じで、半径がその2分の1である円の内側にあれば、弦は正三角形の1辺より長い。従って、求める確率は4分の1である。 これらの方式は以下のような図で表される。弦は中点と(中点が円の中心である場合を除き)1対1に対応する。上に記した3つの選択方式は以下のような中点の分布を示す。方式1と2では一様でなく、方式3では一様な分布となる。一方、弦自体を描いた場合(下段)、方式2では円が視覚的に一様に塗り潰されているのに対し、方式1と3はそうではない。 もちろん、弦を選ぶための他の方式も容易に想像することができ、異なる確率を与えるものも多い。 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「ベルトランの逆説」の詳細全文を読む 英語版ウィキペディアに対照対訳語「 Bertrand paradox (probability) 」があります。 スポンサード リンク
|