|
ボーア・モレルップの定理 (''Bohr-Mollerup Theorem'' ) は、ガンマ関数を特徴づける定理である。この定理によると、正の実軸上で対数凸であり、であり、である複素解析関数は唯一ガンマ関数のみである〔Wolfram Mathworld: Bohr-Mollerup Theorem 〕。 == 証明1 == 初めにガンマ関数が正の実軸上で対数凸であることを確かめる。ワイエルシュトラスの乗積表示から であり、対数の二階微分が正であるからガンマ関数は正の実軸上で対数凸である。また、ともガンマ関数の特徴として周知のものであるから、ガンマ関数はボーア・モレルップの定理の要求を充足する。次に未知の関数がボーア・モレルップの定理の要求を充足するものと仮定してであることを証明する。 と定義する。であるから であり、を任意の自然数としてである。また、であるからである。背理法を用い、となる点が実軸上に存在すると仮定する。しかし、であるから、が存在するためにはが存在しなければならず、延いてはが存在しなければならない。これは を意味する。しかし、とするとであるからとならなければならず、が対数凸であるという要求に反する。故に背理の仮定は成立せず、常にであり、である。以上により、でが示されたが、一致の定理により正則な定義域全体でとなる。 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「ボーア・モレルップの定理」の詳細全文を読む スポンサード リンク
|