|
モデル理論()は、数理論理学による手法を用いて数学的構造(例えば、群、体、グラフ:集合論の宇宙)を研究(分類)する数学の分野である。 モデル理論における研究対象は、形式言語の文に意味を与える構造としてのモデルである。もし言語のモデルがある特定の文または理論(特定の条件を満足する文の集合)を満足するならば、それはその文または理論のモデルと呼ばれる。 モデル理論は代数および普遍代数と関係が深い。 この記事では、無限構造の有限一階モデル理論に焦点を絞っている。有限構造を対象とする有限モデル理論は、扱っている問題および用いている技術の両方の面で、無限構造の研究とは大きく異なるものとなっている。完全性は高階述語論理または無限論理において一般的には成立しないため、これらの論理に対するモデル理論は困難なものとなっている。しかしながら、研究の多くの部分はそのような言語によってなされている。 == 概要 == 言語学における2大分野に統語論と意味論があるが、数理論理学における統語論に該当する大分野が証明論であるのに対し、モデル理論は同様の類推で意味論に当たる。ChangおよびKeisler (1990) の一ページ目を引用すると: :普遍代数 + 構造 = モデル理論. モデル理論は1990年代に急速に発展し、より現代的な定義はWilfrid Hodges (1997) によって与えられた: :モデル理論 = 代数幾何学 − 体. モデル理論の不完全かつ幾分恣意的な下位区分として、古典モデル理論、群および体への応用、および幾何学的モデル理論がある。ここに含まれていないものに計算可能モデル理論があるが、これは論理学の独立した下位分野として見ることができると言っても良い。ゲーデルの完全性定理を含む古典モデル理論初期の定理の例は、上方および下方レーヴェンハイム-スコーレムの定理、ヴォートの two-cardinal 定理、スコットの同形定理、タイプ排除定理 (omitting types theorem) 、そしてリル=ナルゼウスキの定理がある。モデル理論が体へ応用された初期の結果の例は、タルスキの実閉体についての量化記号消去法、疑有限体 (pseudo finite field) 上のAxの定理、そしてロビンソンの超準解析の開発がある。古典モデル理論の発展において、安定理論の誕生が(非可算カテゴリー論 categorical theory 上のMorleyの範疇性定理およびシェラハの分類プログラムを通して)重要なステップとなった。この安定理論は、理論が満たす構文条件に基づくランクと独立性の算法を発展させた。この数十年で、応用モデル理論はより純粋な安定理論と繰り返し融合してきた。この合成の結果は、この記事では幾何学的モデル理論と呼ばれている。幾何学的モデル理論は、古典幾何学的安定理論と同じく、例えばo-minimalityを含むために利用されている。幾何学的モデル理論の例は、関数体についてのMordell–Lang予想のフルショフスキーによる証明がある。幾何学的モデル理論の目標は、純粋なモデル理論の研究において実際に開発されたツールによって、さまざまな数学的構造における定義可能集合の詳細な研究を行い、''数学の地理学''を提供することである。 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「モデル理論」の詳細全文を読む スポンサード リンク
|