翻訳と辞書 |
リッチ平坦多様体[りっちへいたんたようたい] 数学では、リッチ平坦多様体(Ricci-flat manifolds)は、リッチ曲率が 0 であるリーマン多様体である。物理学では、リッチ平坦多様体は、任意の次元で宇宙定数が 0 であるリーマン多様体に対して、アインシュタイン方程式の類似である(vacuum solution)を表わす。リッチ平坦多様体は、通常は宇宙定数が 0 である必要はないアインシュタイン多様体の特別な場合である。 リッチ曲率が、小さな測地用の球の体積がユークリッド空間の中の球の体積から逸脱する量を測る。小さな測地用の球は、体積の変えはしないが、ユークリッド空間の中の標準的な球とは「形」を変えることもありうる。 たとえば、リッチ平坦な多様体の中では、ユークリッド空間の中の円は、変形されて同じ面積を持つ楕円となっていることもありうる。これは(Weyl curvature)のおかげである。 リッチ平坦多様体は、(holonomy group)を制限される場合が多い。重要なケースとして、カラビ・ヤウ多様体や超ケーラー多様体がある。
== 参照項目 ==
* (Weyl tensor)
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「リッチ平坦多様体」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|