翻訳と辞書
Words near each other
・ リューリク (装甲巡洋艦・初代)
・ リューリク1世
・ リューリク2世
・ リューリク・ロスチスラヴィチ
・ リューリク・ロスチスラヴィチ (キエフ大公)
・ リューリク・ロスチスラヴィチ (ペレムィシュリ公)
・ リューリク家
・ リューリク朝
・ リューリック
・ リュール
リューロトの定理
・ リューローの定理
・ リューヴィユの定理
・ リューヴィル
・ リューヴィルの定理
・ リューヴィルの定理 (物理学)
・ リューヴィル・アーノルドの定理
・ リューヴィル場理論
・ リューヴィル数
・ リューヴェン


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

リューロトの定理 : ウィキペディア日本語版
リューローの定理[りゅーろーのていり]
数学において、リューローの定理 (Lüroth's theorem) は、Jacob Lüroth にちなんで名づけられているが、体論の結果であって、有理多様体と関係がある。定理が述べているのは、K(X) の部分体でもある体 K のすべての体拡大は単拡大であるというものである。
== 定理のステートメント ==
K を体とし MK と不定元 ''X'' に対して K(X) の間の中間体とする。するとある有理関数 f(X)\in K(X) が存在して M=K(f(X)) である。換言すれば、KK(X) の間のすべての中間拡大は単拡大である。
リューローの定理の証明は有理曲線の理論から容易に種数の幾何学的概念を用いて得られる。リューローの定理は一般に初等的でないと考えられているにも関わらず、体論の基本だけを使ったいくつかの短い証明が長い間見つかってきた。実質的にはすべてのこれらの単純な証明は原始多項式に関するガウスの補題を主要なステップとして使う(例えば を見よ)。

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「リューローの定理」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.