|
剛体(ごうたい、)とは、力の作用の下で変形しない物体のことである。 物体を質点の集まり(質点系)と考えたとき、質点の相対位置が変化しない系として表すことができる。 剛体は物体を理想化したモデルであり、現実の物体には完全な意味での剛体は存在せず、どんな物体でも力を加えられれば少なからず変形する。 しかし、大きな力を加えなければ、多くの固体や結晶体は変形を無視することができて剛体として扱うことができる。 剛体は、変形を考えないことから、その運動のみが扱われる。剛体の運動を扱う動力学は剛体の力学()と呼ばれる。大きさを無視した質点の力学とは異なり、大きさをもつ剛体の力学は姿勢の変化(転向)が考えられる。 こまの回転運動などは剛体の力学で扱われるテーマの一つである。 なお、物体の変形を考える理論として、弾性体や塑性体の理論がある。 また、気体や液体は比較的自由に変形され、これを研究するのが流体力学である。 これらの変形を考える分野は連続体力学と呼ばれる。 剛体の動力学は、剛体の質量が重心に集中したものとしたときの並進運動に関するニュートンの運動方程式と、重心のまわりの回転に関するオイラーの運動方程式で記述できる。 == 剛体の静力学 == 物体に作用する力を表現するには、大きさ()、方向()、作用点()の3つの要素が必要となる〔中村 他『建築構造力学』 pp.9-10〕。 物体が広がりを持たない質点の場合は、力の作用点は質点の位置に一致するため考える必要がない。 一方、広がりを持つ物体の場合は作用点がどこにあるかを考える必要がある。しかし、変形を考えない剛体の場合は、作用点を力の方向に平行な直線に沿って動かしても力が及ぼす効果は変わらない〔。作用点を通り、力の方向に平行な直線は力の作用線()と呼ばれる。 大きさと方向を持つ力はベクトル量として表される。剛体の場合はこれに加えて作用線の情報が必要となる。作用線の情報は適当な点のまわりの力のモーメントとして表される。 剛体の釣り合いを考える際は、力の釣り合い(力のベクトル的な和がゼロ)の条件とともに、力のモーメントの釣り合い(力のモーメントのベクトル的な和がゼロ)の条件が必要となる。 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「剛体の力学」の詳細全文を読む 英語版ウィキペディアに対照対訳語「 Rigid body dynamics 」があります。 スポンサード リンク
|