|
付加体(ふかたい、またはaccretionary wedge)とは、右図に示すように海洋プレートが海溝で大陸プレートの下に沈み込む際に、海洋プレートの上の堆積物がはぎ取られ、陸側に付加したもの。現在のところ「日本列島の多くの部分はこの付加体からなる」という見方がされている。〔『付加体地質学』 はじめに より〕 == 概要 == 付加体という概念は、日本では1976年に九州大学の勘米良亀齢が南九州の四万十層を調査して、その構造を付加体と名付けた。欧米でもほとんど同時期にオックスフォード大学の W. Stuart McKerrow らがスコットランド地方の複雑な地質を調査して1977年に付加体構造に関する論文を発表した〔『付加体地質学』3頁〕。この概念によって日本列島を形成する海洋起源の堆積岩や変成岩について、系統的な説明ができるようになった。 プレートテクトニクスでは、海洋プレートは上部マントルの上昇部である海嶺で作られ、海洋底として徐々に海嶺からはなれて行き、最後には海溝で沈み込んでゆくと説明されている。この間、玄武岩質の海洋プレートの上に様々な岩石が堆積してゆく。まず海嶺近辺の所々で地下からの熱水の湧き出しによる『金属鉱床』が形成される。大洋では放散虫の死骸を含んだ珪酸塩質のチャートや、他の生物の死骸を含んだ炭酸カルシウム質の石灰岩が徐々に堆積してゆく。海底火山の玄武岩や、その周辺に発達したサンゴ礁からできた石灰岩も、海洋プレートの上に乗ったまま運ばれる。海溝に近づくと大陸から運ばれた土砂や岩石によって、砂岩や礫岩も堆積する。海洋プレートが大陸プレートの下に沈み込む際に、これらの堆積物が海洋プレートから剥ぎ取られて大陸プレートに付加したものを付加体と呼ぶ〔『地球史がよくわかる本』 27頁。〕。海洋底表層のチャート類や大きなサンゴ礁などは、海溝で海洋プレートから別れて陸側に付加する。海溝では次々に新しい付加体が到着するため、新しい付加体は古い付加体の下のもぐりこみながら大陸側へ押上げる。この結果、付加体内部は並行する多くの逆断層を有し、逆断層を挟んで新しい堆積物が古い堆積物の下に潜り込んでいるため、地層累重の法則に反する構造を取る(ただし並行する2本の断層間にある岩体内においては、下部が古く上部が新しい)。また海洋プレートと共に地下に沈んだ堆積物の一部は、大陸プレートとの摩擦で海洋プレートから離れ、大陸プレートの下に「底付け」される。この場合、堆積岩は比較的低い温度と高い圧力を受け、特徴的な変成岩となる。日本列島に幅広く分布する三波川変成帯に代表される「広域変成帯」はこのようにして形成された。これらの変性帯も広い意味での付加体と考える事が出来る(外部リンク参照)。日本近海では現在も南海トラフにおいて付加体が形成されているが、現在の海溝沈み込み帯における付加体形成範囲は海溝全体の約30%の範囲でしかなく、大半の海溝では付加体を形成せずにプレートが沈み込んでいる〔『付加体地質学』24頁〕。 海洋プレートが更に深部まで沈み込んで周辺温度が1000℃付近まで上昇すると、海洋プレートから搾り出された水分が周辺のマントルの融点を下げてマグマを形成する(上記図の右の黄色い部分に相当)。形成されたマグマは上昇して地殻に達し、更に地殻中の古い付加体を溶かしながら上昇してゆく。これらのマグマは火山フロントとして地表で噴火すると同時に、噴火に至らないまま地下にも多数の花崗岩の岩体をつくる。中部地方、近畿地方(六甲山など)、中国山地に広く分布する中生代の花崗岩がその代表例である。 日本列島以外でも、地球上で最も古い岩石であるグリーンランドのイスア地方の38億年前の地層が付加体の特徴を有していることが確認された〔『生命と地球の共進化』 83頁。〕。また安定大陸であるカナダ楯状地においても25億年前に形成された海洋起源の地層中に付加体の特徴である新旧地層の上下逆転現象が確認されている〔『生命と地球の共進化』 37頁〕。その他の大陸でも下記西オーストラリアや南アフリカ〔『生命と地球の歴史』 205頁〕、さらにニュージーランド、スコットランド南部、カリフォルニア、イタリア北部など各地で付加体構造が見つかっている〔『付加体地質学』126頁〕。 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「付加体」の詳細全文を読む 英語版ウィキペディアに対照対訳語「 Accretionary wedge 」があります。 スポンサード リンク
|