|
数学では、体 上の 変数の代数函数体 (algebraic function field)(単に、函数体とも言う)は、 上に超越次数 を持つ有限生成な体の拡大 である。同じことであるが、 上の 変数の代数函数体は、 上の 変数の有理函数の体 の有限拡大として定義できる。 == 例 == 例として、多項式環 において、既約多項式 により生成されたイデアルを考え、剰余環 ''k''/(''Y''2−''X''3) の分数体を形成する。これは 上の一変数の函数体であり、、あるいは、 と書くこともできる。代数函数体の次数はうまく定義できる考え方ではないことが分かる。
|