翻訳と辞書
Words near each other
・ 代数方程式
・ 代数曲線
・ 代数曲面
・ 代数構造
・ 代数次元
・ 代数的
・ 代数的K-理論
・ 代数的K-群
・ 代数的K理論
・ 代数的な元
代数的サイクル
・ 代数的サイクルの標準予想
・ 代数的データ型
・ 代数的トポロジー
・ 代数的位相幾何学
・ 代数的内部
・ 代数的双対
・ 代数的双対空間
・ 代数的和
・ 代数的微分方程式


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

代数的サイクル : ウィキペディア日本語版
代数的サイクル[だいすうてきさいくる]
数学では、代数多様体 V の上の代数的サイクル(algebraic cycle)とは、大まかには、V 上のホモロジー類(homology class)であり、V の部分多様体の線型結合により表されるものを言う。従って、V 上の代数的サイクルは、代数幾何学に直接関係する V の代数トポロジーである。1950年代から1960年代にかけて、いくつかの基本的な予想が提示され、代数的サイクルの研究が、一般的な多様体の代数幾何学の主要な対象のひとつとなった。

代数的サイクルの持つ難しさは、全く簡単なことであり、代数的サイクルの存在を予想することは容易であるが、それらを構成する今日の方法が不十分である。代数的サイクルの主な予想は、ホッジ予想テイト予想を含んでいる。ヴェイユ予想の証明の研究から、アレクサンドル・グロタンディーク(Alexander Grothendieck)やエンリコ・ボンビエリ代数的サイクルの標準予想として現在知られていることを定式化した。

代数的サイクルは、代数的K-理論に密接に関連していることが示されている。
良く使われる交叉理論のためには、様々な(equivalence relations on algebraic cycles)が使われる。特に重要なことは、いわゆる有理的同値(rational equivalence)である。有理同値を無視してのサイクルは、次数付き環、(Chow ring)を形成し、積は交叉積により与えられる。さらに基本的な関係には、代数的同値(algebraic equivalence)、数値的同値(numerical equivalence)やホモロジカル同値(homological equivalence)がある。一部は予想に過ぎないが、これらはモチーフの理論への応用を持っている。

==定義==
代数多様体、あるいはスキーム ''X'' の代数的サイクルは、既約(irreducible)かつ(reduced)(closed subscheme)の形式的線型結合 ''V'' = ∑ ''ni·Vi'' である。係数 ''ni'' は ''V'' の中での ''Vi'' の多重度である。最初は、係数は整数として取られるが、有理数の係数も広く使われる。
対応
: ↭
(V は(ザリスキー位相に関して)(generic point)へ写像され、逆に点は(被約な部分スキームをもつ)閉包へ写像され、)従って、代数的サイクルはまさに X の点の形式的な線型結合となる。
サイクルの群は自然に、サイクルの次元による次数をもつ群 Z
*
(X) を形成する。余次元による次数も有益で、群は通常 Z
*
(X) と書かれる。
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.