翻訳と辞書 |
全有界空間[ぜんゆうかいくうかん] 位相幾何学および関連する数学の分野において、全有界空間(ぜんゆうかいくうかん、)とは、任意の固定された「大きさ」(但し「大きさ」の意味する所は文脈によって異なる)の有限個の部分集合によって覆うことの出来る空間のことを言う。その大きさがより小さく固定される程、覆うためにはより多くの部分集合が必要となるが、どのような大きさであっても必ず有限個の部分集合によって覆うことが出来る。関連する概念として、空間内のある部分集合のみが覆われる場合の全有界集合(totally bounded set)がある。全有界空間の全ての部分集合は、全有界集合である。しかし、たとえ空間が全有界でなくとも、その部分集合の幾つかは全有界であることがあり得る。 しばしばプレコンパクト(precompact)という語も同様の意味で用いられる。しかしプレコンパクトは相対コンパクトの意味でも用いられる。完備距離空間においてそれらの意味は一致するが、一般には同一のものではない。詳しくは後述の「選択公理の使用」の節を参照されたい。 == 距離空間に対する定義 ==
距離空間 が全有界(totally bounded)であるための必要十分条件は、全ての実数 に対して、 内に半径 のの集まりでその合併が を覆う様なものが存在することである。また同値であるが、距離空間 が全有界であるための必要十分条件は、全ての に対して、各元の半径が高々 であるような有限被覆が存在することである。これは有限 の存在と同値である〔Sutherland p.139〕。 全有界空間は(有限個の有界集合の合併は有界なので)有界である。しかしその逆は一般には成り立たない。例えば、離散距離を備える無限集合は有界であるが、全有界ではない。 M をユークリッド空間とし、d をユークリッド距離とするとき、(部分空間位相を伴う)部分集合が全有界であるための必要十分条件は、それが有界であることである。
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「全有界空間」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|