翻訳と辞書
Words near each other
・ 分類学的距離
・ 分類学者
・ 分類展示
・ 分類形質
・ 分類故事要語
・ 分類方式一致度
・ 分類未確定
・ 分類械闘
・ 分類法
・ 分類目録
分類空間
・ 分類系
・ 分類群
・ 分類表
・ 分類記載
・ 分類辞
・ 分類階級
・ 分餐
・ 分館
・ 分骨


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

分類空間 : ウィキペディア日本語版
分類空間[ぶんるいくうかん]

数学、特にホモトピー論では、位相群 ''G'' の分類空間(classifying space) BG は、G のにより空間 ''EG'' の商空間である(つまり、すべてのホモトピー群が自明となるような位相空間)。分類空間は、パラコンパクトな多様体上の任意の G 主バンドルが、主バンドル EG → BG の(pullback bundle)と同型となる性質を持つ〔, Theorem 2〕。
(discrete group) G に対し、BG は、大まかには、弧状連結位相空間 X であり、X の基本群が G と同型となり、X の高次ホモトピー群が自明となる、つまり、BG は(Eilenberg-Maclane space)、または K(G,1) となる。

==動機==
無限巡回である G の例は、X としての例がある。G が(discrete group)のとき、X に付く条件を特定する方法は、X の普遍被覆 Y が可縮であることである。この場合、射影写像
:\pi: Y\longrightarrow X\
は、構造群 G を持つファイバーバンドルとなり、実際、G の主バンドルである。実際、(homotopy category)では分類空間の概念への興味は、ファイバーバンドルの場合には、Y が主 G-バンドルに関して普遍的性質を持つという事実から発生した。このことは、高次のホモトピー群が 0 となること以上に基本的なことである。基本的考え方は、G が与えられると、G がその上に自由に作用するような可縮な空間 Y を探すことである。(ホモトピー論の(weak equivalence)の概念は、2つのバージョンを関連付ける。)円の例の場合、無限巡回群 C が実直線に自由に作用するという事実に注意する必要があり、これは可縮である。X を商空間として、3次元から平面への射影となることを考えるように、円は R = Y から X への幾何学のことばでいう射影 π と見なすことができる。この主張は、π は主 C-バンドルの中でも普遍的な性質を持っていることである。任意の主 C-バンドルは有限の方法で π から有限の方法で得られる。
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.