|
ベクトル解析におけるスカラー場の勾配(こうばい、; グラディエント)は、各点においてそのスカラー場の変化率が最大となる方向への変化率の値を大きさにもつベクトルを対応させるベクトル場である。簡単に言えば、任意の量の空間における変位を、傾きとして表現(例えば図示)することができるが、そこで勾配はこの傾きの向きや傾きのきつさを表している。 ユークリッド空間上の関数の勾配を、別なユークリッド空間に値を持つ写像に対して一般化したものは、ヤコビ行列で与えられる。さらに一般化して、バナッハ空間から別のバナッハ空間への写像の勾配をフレシェ微分を通じて定義することができる。 == 解釈 == 一つの部屋を、その部屋の温度を与えるスカラー場 と考えれば、各点 における温度を と書くことができる(ここでは温度は時間変化を起こさないものと仮定する)。部屋の各点において、 の勾配は最も早く温度が上昇する方向を指し、その大きさはその方向でどれほど早く温度が上昇するかを示している。 点 における海抜が であるような曲面を考える。ある点における の勾配は、その点においてもっとも傾き(縦断勾配)が急峻であるような方向を指すベクトルで、その大きさはその点でのもっとも急峻な傾きの値によって与えられる。 勾配からは、内積を取ることにより、最も変化の大きい方向以外の方向でも、そのスカラー場がどれほど変化するかを知ることができる。 丘陵のもっとも急峻な傾きが とすると、その丘陵を真っ直ぐ上る道の最も急峻な傾きも となるが、代わりに適当な角度をつけて丘陵をぐるりと回る道を行けば、傾きはもっと緩やかになるはずである。 例えば、道と真っ直ぐ坂を上がる方向との間の角度が、水平面に投影して になっていれば、その道の最も急峻な傾きは ( に の余弦を掛けたもの)になるはずである。 この考察を数学的に述べると以下のようになる。丘陵の高さを表す関数 が微分可能であるものとすれば、 の勾配に単位ベクトルとの内積をとれば、そのベクトルの方向への丘陵の傾きが得られる。もう少し形式的に書くと、 が可微分であるとき、 の勾配と与えられた単位ベクトルとの内積は、その単位ベクトルの方向への の方向微分に等しい。 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「勾配 (ベクトル解析)」の詳細全文を読む 英語版ウィキペディアに対照対訳語「 Gradient 」があります。 スポンサード リンク
|