翻訳と辞書
Words near each other
・ 単純一罪
・ 単純並置
・ 単純代数群
・ 単純共有度係数
・ 単純再生産
・ 単純函数
・ 単純分子軌道法
・ 単純加群
・ 単純労働
・ 単純化
単純単位格子
・ 単純単発番組
・ 単純反応
・ 単純合釘継続歯
・ 単純固定
・ 単純型付きラムダ計算
・ 単純型細胞
・ 単純多元環
・ 単純対試験法
・ 単純小選挙区制


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

単純単位格子 : ウィキペディア日本語版
単位胞[たんいぼう]
単位胞(たんいぼう、Unit cell)とは、結晶中の空間格子の格子点がつくる平行6面体のうち、空間格子の構造単位として選ばれたものである。単位格子と言うこともある。つまり、単位胞は結晶構造の周期パターンの単位となる平行6面体であり、結晶構造は単位胞の敷き詰めで表現される。
単位胞の頂点から伸びる、3つの稜を表す3本のベクトル''a'', ''b'', ''c''〉は基本ベクトルと呼ばれる。ベクトルの大きさ〈距離〉と単位ベクトルの成す角、''α''=∠bc、''β''=∠ca、''γ''=∠abは単位胞の格子定数と呼ばれる。
頂点以外に空間格子の格子点を含まない単位格子を単純単位格子と呼び、頂点以外にも格子点を含む場合は多重単位格子と呼ぶ。
単純単位格子のうち、距離a,b,cが最短になるように選択した単純単位格子は既約単位格子と呼ばれる。その場合、''α''、''β''、''γ''はすべて鈍角かすべて鋭角となる。
多重単位格子には体心格子面心格子底心格子が含まれる。
ある空間格子が存在するとき、格子点に違いがなければ一つの空間格子に対して複数種類の単位胞を設定することが可能である。実際の結晶では、つまりイオン結晶などでは格子点に異なる原子分子等が配置されるため単位胞の選択に対して対称性並進性に関する制約が発生する。'a'', ''b'', ''c''〉は基本ベクトルと呼ばれる。ベクトルの大きさ〈距離〉と単位ベクトルの成す角、''α''=∠bc、''β''=∠ca、''γ''=∠abは単位胞の格子定数と呼ばれる。
頂点以外に空間格子の格子点を含まない単位格子を単純単位格子と呼び、頂点以外にも格子点を含む場合は多重単位格子と呼ぶ。
単純単位格子のうち、距離a,b,cが最短になるように選択した単純単位格子は既約単位格子と呼ばれる。その場合、''α''、''β''、''γ''はすべて鈍角かすべて鋭角となる。
多重単位格子には体心格子面心格子底心格子が含まれる。
ある空間格子が存在するとき、格子点に違いがなければ一つの空間格子に対して複数種類の単位胞を設定することが可能である。実際の結晶では、つまりイオン結晶などでは格子点に異なる原子分子等が配置されるため単位胞の選択に対して対称性並進性に関する制約が発生する。', ''b'', ''c''〉は基本ベクトルと呼ばれる。ベクトルの大きさ〈距離〉と単位ベクトルの成す角、''α''=∠bc、''β''=∠ca、''γ''=∠abは単位胞の格子定数と呼ばれる。
頂点以外に空間格子の格子点を含まない単位格子を単純単位格子と呼び、頂点以外にも格子点を含む場合は多重単位格子と呼ぶ。
単純単位格子のうち、距離a,b,cが最短になるように選択した単純単位格子は既約単位格子と呼ばれる。その場合、''α''、''β''、''γ''はすべて鈍角かすべて鋭角となる。
多重単位格子には体心格子面心格子底心格子が含まれる。
ある空間格子が存在するとき、格子点に違いがなければ一つの空間格子に対して複数種類の単位胞を設定することが可能である。実際の結晶では、つまりイオン結晶などでは格子点に異なる原子分子等が配置されるため単位胞の選択に対して対称性並進性に関する制約が発生する。'b'', ''c''〉は基本ベクトルと呼ばれる。ベクトルの大きさ〈距離〉と単位ベクトルの成す角、''α''=∠bc、''β''=∠ca、''γ''=∠abは単位胞の格子定数と呼ばれる。
頂点以外に空間格子の格子点を含まない単位格子を単純単位格子と呼び、頂点以外にも格子点を含む場合は多重単位格子と呼ぶ。
単純単位格子のうち、距離a,b,cが最短になるように選択した単純単位格子は既約単位格子と呼ばれる。その場合、''α''、''β''、''γ''はすべて鈍角かすべて鋭角となる。
多重単位格子には体心格子面心格子底心格子が含まれる。
ある空間格子が存在するとき、格子点に違いがなければ一つの空間格子に対して複数種類の単位胞を設定することが可能である。実際の結晶では、つまりイオン結晶などでは格子点に異なる原子分子等が配置されるため単位胞の選択に対して対称性並進性に関する制約が発生する。', ''c''〉は基本ベクトルと呼ばれる。ベクトルの大きさ〈距離〉と単位ベクトルの成す角、''α''=∠bc、''β''=∠ca、''γ''=∠abは単位胞の格子定数と呼ばれる。
頂点以外に空間格子の格子点を含まない単位格子を単純単位格子と呼び、頂点以外にも格子点を含む場合は多重単位格子と呼ぶ。
単純単位格子のうち、距離a,b,cが最短になるように選択した単純単位格子は既約単位格子と呼ばれる。その場合、''α''、''β''、''γ''はすべて鈍角かすべて鋭角となる。
多重単位格子には体心格子面心格子底心格子が含まれる。
ある空間格子が存在するとき、格子点に違いがなければ一つの空間格子に対して複数種類の単位胞を設定することが可能である。実際の結晶では、つまりイオン結晶などでは格子点に異なる原子分子等が配置されるため単位胞の選択に対して対称性並進性に関する制約が発生する。'c''〉は基本ベクトルと呼ばれる。ベクトルの大きさ〈距離〉と単位ベクトルの成す角、''α''=∠bc、''β''=∠ca、''γ''=∠abは単位胞の格子定数と呼ばれる。
頂点以外に空間格子の格子点を含まない単位格子を単純単位格子と呼び、頂点以外にも格子点を含む場合は多重単位格子と呼ぶ。
単純単位格子のうち、距離a,b,cが最短になるように選択した単純単位格子は既約単位格子と呼ばれる。その場合、''α''、''β''、''γ''はすべて鈍角かすべて鋭角となる。
多重単位格子には体心格子面心格子底心格子が含まれる。
ある空間格子が存在するとき、格子点に違いがなければ一つの空間格子に対して複数種類の単位胞を設定することが可能である。実際の結晶では、つまりイオン結晶などでは格子点に異なる原子分子等が配置されるため単位胞の選択に対して対称性並進性に関する制約が発生する。'〉は基本ベクトルと呼ばれる。ベクトルの大きさ〈距離〉と単位ベクトルの成す角、''α''=∠bc、''β''=∠ca、''γ''=∠abは単位胞の格子定数と呼ばれる。
頂点以外に空間格子の格子点を含まない単位格子を単純単位格子と呼び、頂点以外にも格子点を含む場合は多重単位格子と呼ぶ。
単純単位格子のうち、距離a,b,cが最短になるように選択した単純単位格子は既約単位格子と呼ばれる。その場合、''α''、''β''、''γ''はすべて鈍角かすべて鋭角となる。
多重単位格子には体心格子面心格子底心格子が含まれる。
ある空間格子が存在するとき、格子点に違いがなければ一つの空間格子に対して複数種類の単位胞を設定することが可能である。実際の結晶では、つまりイオン結晶などでは格子点に異なる原子分子等が配置されるため単位胞の選択に対して対称性並進性に関する制約が発生する。
== 関連項目 ==

* スーパーセル法
* 結晶格子
* 物性物理学
* 第一原理バンド計算

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「単位胞」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.