|
単調写像(たんちょうしゃぞう、)とは、単調性、すなわち順序集合の間の写像が順序を保つような性質を持つ写像のことである。具体的な例としては以下の単調増加関数および単調減少関数がある。 単調増加(たんちょうぞうか、)とは、狭義には実数の値を持つ関数 が、 の増加につれて常に関数値 も増加することをいい、このような性質を持つ関数を単調増加関数(たんちょうぞうかかんすう、)と呼ぶ。同様に、引数 の増加につれて関数値 が常に減少することを単調減少(たんちょうげんしょう、)といい、そのような性質を持つ関数を単調減少関数(たんちょうげんしょうかんすう、)と呼ぶ。従って、連続な単調増加関数 を縦軸、その引数 を横軸にとったグラフ上の曲線は常に右肩上りで、右肩下がりになっている部分がない。逆に単調減少関数の場合には、常に右肩下がりであり右肩上がりの部分がない。 ある関数が単調増加または単調減少する性質をまとめて単調性(たんちょうせい、)と呼ぶ。 経済学の分野では、単調増加、単調減少の事をそれぞれ逓増(ていぞう、)、逓減(ていげん、)とも言う(例:限界効用逓減)。 == 単調性 == 実数から実数への関数 が : ならば をみたすとき、 は(狭義)単調増加するという。また、 : ならば をみたすとき、 は広義単調増加するという。 と の間の不等号の向きを逆にすることで単調減少の定義が得られる。文脈によって明らかなときは「広義」/「狭義」を省略することも多い。広義単調増加のことを「単調非減少」と呼ぶこともある。 上記の単調性の定義は定義域と値域が実数全体の集合でなくても(半)順序集合一般で意味を持つ。この場合、単調増加する写像は順序を保つ写像 () であると言い替える事ができ、単調減少する写像は順序を逆にする写像 () であると言い替える事ができる。 単調性を満たす写像を単調写像と呼ぶ。 単調性は有界性と併せて使われることが多い。つまり、つねに上限を持つ順序集合への単調写像 が上に有界であるとき、列 に対して は上限を持つ。このことから上に有界な単調増加実数列は常に収束し、自然数上の再帰関数は必ず不動点を持つ(領域理論)。 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「単調写像」の詳細全文を読む スポンサード リンク
|