翻訳と辞書 |
双有理幾何学[そうゆうりきかがく]
代数幾何学では、双有理幾何学(birational geometry)の目標は、2つの代数多様体が(多様体の次元)より低い次元の部分を除き、どのようなときに同型となるかを決定することである。このことは、多項式というよりも、有理函数により与えられる写像を研究することを意味し、有理函数が極を持つ場合は(写像を)定義することができないかもしれない。
==双有理写像== ある(既約(irreducible)な)代数多様体 ''X'' から別の多様体 ''Y'' へのは、ダッシュ付矢印で ''X'' – → ''Y'' と書かれ、''X'' の空ではない開集合 ''U'' から ''Y'' への(morphism)として定義される。代数幾何学で使用されるザリスキ位相の定義により、空ではない開部分集合 U は常に X の低い次元の部分集合の補集合である。具体的には、有理写像は有理函数を使って座標で記述することができる。 ''X'' から ''Y'' への双有理写像(birational map)は、有理写像 ''f'': ''X'' – → ''Y'' であり、''f'' の逆写像 ''Y'' – → ''X'' も有理写像である写像を言う。双有理写像は、''X'' の空でない開集合から ''Y'' の空でない開集合への同型をひき起こす。このとき、''X'' と ''Y'' は 双有理(birational) もしくは 双有理同値 と言う。代数的なことばでは、体 ''k'' 上の2つの多様体が双有理とは、それらの代数多様体の函数体が ''k'' の拡大体として同型であることと同値である。
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|