翻訳と辞書
Words near each other
・ 台州駅
・ 台布巾
・ 台帳
・ 台座
・ 台建
・ 台弘
・ 台形
・ 台形CSGダム
・ 台形体
・ 台形公式
台形則
・ 台形法
・ 台形骨切除
・ 台形骨切除術
・ 台徳院霊廟
・ 台所
・ 台所太平記
・ 台所戦争
・ 台所洗剤
・ 台所用品


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

台形則 : ウィキペディア日本語版
台形公式[だいけいこうしき]
数学において、台形公式(だいけいこうしき、)もしくは台形則(だいけいそく)は定積分近似計算するための方法、すなわち数値積分のひとつである。これはニュートン・コーツの公式の1次の場合である。被積分関数を区分線形関数で近似し、台形の面積の公式に帰着させて積分の近似値を求める。
具体的に言えば、求めたい''x'' -''y'' グラフの''y'' = 0を含む面積内に無数の台形を置くと、その台形の面積の集合和は本物の面積に限りなく近い値となる。
一次関数による近似なので精度はそれほど期待できず、二次関数で近似するシンプソンの公式などの方が精度が高い。シンプソンの公式やその他の類似の手法は、2階連続微分可能な関数に対する台形公式の改良とみなせるが、細かく変動しない関数に対しては台形公式で十分であり、計算も簡単である。
== 近似誤差 ==
台形公式の利点は、近似誤差が容易に分かることである。
凸関数に対してこの公式で積分を求めると、結果は実際の値よりも台形と実際の関数曲線の差分の分だけ小さい値になり、凹関数に対してこの公式で積分を求めると、結果は実際の値よりも台形と実際の関数曲線の差分の分だけ大きい値になる。また積分区間が変曲点を含むとき上記の凸部分の誤差と凹部分の誤差が打ち消し合い''全体的な誤差''は小さくなる。
さらに、台形公式は周期関数をその周期よりも長い区間積分する場合にはきわめて精度が高くなる傾向がある。これはオイラーの和公式(オイラー・マクローリンの公式)との関係をみると良く理解できる。しかしながら非周期関数に対しては一般に、 ガウス求積クレーンショー・カーチス数値積分則のような非等分点法の方がより精度が高い。
また、二重指数関数型数値積分公式台形公式が応用されている。2重指数型関数が入ったケースにおいては、同様に精度がきわめて高い事が知られている。

台形公式の誤差の補正には、非積分関数の端点での高階導関数値を用いた「オイラー・マクローリンの公式」や、端点での高階導関数値を高次の差分商に置き換えて得られる「グレゴリーの公式」が知られている。(参考文献:日高孝次:「数値積分法」上巻,第四章「Euler-MacLaurin 及びGregoryの数値積分公式」,岩波書店、昭和11年(1936年)7月)(ただし「数」の字は旧字体)。

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「台形公式」の詳細全文を読む

英語版ウィキペディアに対照対訳語「 Trapezoidal rule 」があります。



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.