|
数学における体 ''K'' 上の合成代数(ごうせいだいすう、)とは、''K'' 上の(必ずしも結合的でない)単位的多元環 ''A'' とその上の非退化二次形式 ''N'' で条件 : を満たすものの組 (''A'', ''N'') をいう(紛れの恐れがないならば組 (''A'', ''N'') の代わりに単に台と同じ記号 ''A'' のみで表す)。二次形式 ''N'' は合成代数 ''A'' のノルムと呼ばれる。合成代数のことをノルム代数(ノルムつき多元環)と呼ぶこともあるが、函数解析学におけるノルム代数とはノルムの意味が異なるので注意が必要である。 == 合成代数の構造定理 == 標数が 2 でない体 ''K'' 上の合成代数はすべて、''K'' からケーリー=ディクソンの構成法を繰り返し用いることによって構成できる(標数が 2 の場合は ''K'' の代わりに二次元の部分合成代数を考えればよい)。合成代数が取りうる次元は 1, 2, 4, 8 のうちのいずれかに限られる〔Jacobson 1958, Roos 2008〕。 * ''K'' 上一次元の合成代数が存在するのは標数 char(''K'') が 2 でないときに限る。 * 一次元または二次元の合成代数は可換かつ結合的である。 * ''K'' 上二次元の合成代数は、''K'' の二次拡大体か ''K'' ⊕ ''K'' のいずれかである。 * ''K'' 上四次元の合成代数は結合的だが非可換であり、''K'' 上の四元数環と呼ばれる。 * 八次元の合成代数は非結合的かつ非可換であり、八元数環と呼ばれる。 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「合成代数」の詳細全文を読む スポンサード リンク
|