|
尺度水準(しゃくどすいじゅん)とは、調査対象に割り振った変数、その測定、あるいはそれにより得られたデータを、それらが表現する情報の性質に基づき数学・統計学的に分類する基準である。スタンレー・スティーヴンズ(Stanley Smith Stevens)が1946年に論文「測定尺度の理論について」"On the Theory of Scales of Measurement" で提案した分類がよく用いられる。 変数に対して可能な数学的操作は、変数を測定する尺度水準に依存し、その結果特に統計学で用いるべき要約統計量および検定法も変数の尺度水準に依存する。 スティーヴンズは低い方から順に以下の4つの尺度水準を提案しており、高い水準はより低い水準の性質を含む形になっている。また高い水準でのデータを低い水準に変換して扱うことができる。 ==名義尺度== この水準では数字を単なる名前として対象に割り振る。2つの対象に同じ数字がついていればそれらは同じカテゴリに属する。変数値間の比較は等しいか異なるかでしか行えない。順序もないし加減などの演算もできない。 例としては電話番号、背番号、バスの系統番号など。代表値の指標として使えるのは最頻値のみである。統計的バラツキは変動比や情報エントロピーで評価できるが、標準偏差などの概念はありえない。名義尺度でのみ測定されるデータはカテゴリデータとも呼ばれる。 *なおカテゴリデータを、ある性質が「あるかないか」という表現に直し、さらにこれを「1か0か」で表現したものをダミー変数という。ダミー変数またはそれから算出されるスコア(点数)を、順序尺度以上の水準に準じて扱う方法もよく用いられる。 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「尺度水準」の詳細全文を読む 英語版ウィキペディアに対照対訳語「 Level of measurement 」があります。 スポンサード リンク
|