翻訳と辞書 |
基本群[きほんぐん]
数学、特に代数トポロジーにおいて、基本群(きほんぐん、)とは、ある固定された点を始点と終点にもつふたつのループが互いに連続変形可能かを測るに付帯する群である。直観的には、それは位相空間にある穴についての情報を記述している。基本群はホモトピー群の最初で最も単純な例である。基本群は位相不変量である。つまり同相な位相空間は同じ基本群を持っている。 基本群は被覆空間の理論を用いて研究することができる。なぜなら、基本群は元の空間に付帯する普遍被覆空間の被覆変換群に一致するからである。基本群のアーベル化は、その空間の第一ホモロジー群と同一視することできる。位相空間が単体複体に同相のとき、基本群は群の生成子と関係式のことばで明示的に記述することができる。 基本群はアンリ・ポアンカレによって1895年に論文"Analysis situs〔 Translated in 〕"で定義された。ベルンハルト・リーマンとポアンカレとフェリックス・クラインの仕事でリーマン面の理論において基本群の概念が現れた。基本群は閉曲面の位相的な完全な分類を提供するだけでなく、複素函数のモノドロミー的性質の記述もする。 == 直感的説明 == 空間(例えば、曲面)とその中の点があり、この点を始点と終点とするすべてのループ — この点を始点とし周囲を巡り最終的に始点に戻ってくる道 — を考える。2つのループは明らかな方法でつなげることができる、すなわち第一のループに沿って移動してから、第二のループに沿って移動する。2つのループは、ループを壊すことなく一方から他方へ変形できるときに同値であると考える。すべてのそのようなループの集合にこの方法で合成と同値関係を入れたものがその空間の基本群である。
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「基本群」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|