|
(たへんりょうかいせき、)あるいは(たへんりょうとうけい、)とは、複数の結果変数からなる多変量データを統計的に扱う手法。主成分分析、因子分析、クラスター分析などがある。一般に、多変量解析を行うためには計算負荷が高く手計算ではきわめて困難だが、コンピュータの発展により、容易に実行できるようになった。 近年では共分散構造分析(「構造方程式モデリング」とも言う)が普及してきている。一方、探索的多変量解析で総称される各種の手法がデータマイニングなどでよく使われるようになっている。''(たへんりょうかいせき、)あるいは(たへんりょうとうけい、)とは、複数の結果変数からなる多変量データを統計的に扱う手法。主成分分析、因子分析、クラスター分析などがある。一般に、多変量解析を行うためには計算負荷が高く手計算ではきわめて困難だが、コンピュータの発展により、容易に実行できるようになった。 近年では共分散構造分析(「構造方程式モデリング」とも言う)が普及してきている。一方、探索的多変量解析で総称される各種の手法がデータマイニングなどでよく使われるようになっている。''(たへんりょうとうけい、)とは、複数の結果変数からなる多変量データを統計的に扱う手法。主成分分析、因子分析、クラスター分析などがある。一般に、多変量解析を行うためには計算負荷が高く手計算ではきわめて困難だが、コンピュータの発展により、容易に実行できるようになった。 近年では共分散構造分析(「構造方程式モデリング」とも言う)が普及してきている。一方、探索的多変量解析で総称される各種の手法がデータマイニングなどでよく使われるようになっている。 == 主な多変量解析 == * 重回帰分析 * 主成分分析 * 独立成分分析 * 因子分析 * 判別分析 * 数量化理論 (I類、II類、III類、IV類) * クラスター分析 * コンジョイント分析 * 多次元尺度構成法 (MDS) lv:Daudzdimensiju statistiskā analīze 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「多変量解析」の詳細全文を読む スポンサード リンク
|