翻訳と辞書 |
接続形式[せつぞくけいしき]
数学、特に微分幾何学では、接続形式(connection form)は、微分形式や(moving frame)のことばを使うことにより、接続のデータを構成する方法である。 歴史的には、接続形式はエリ・カルタン(Élie Cartan)により20世紀の前半に導入された。これは彼の動標構の方法の一部であり、彼の主要な動機であった。接続形式は標構(frame)(座標系)の選択に依存するので、テンソル的な対象ではない。接続形式の様々な一般化や再解釈がカルタンの一連の初期の仕事で定式化された。特に、主バンドル上の接続は、テンソル的な対象として接続形式の自然な再解釈を持っている。他方、接続形式は抽象的な主バンドル上というよりは、むしろ微分可能多様体(differentiable manifold)上に定義された微分形式であるという利点を持っている。従って、テンソル性がないにもかかわらず、それらの計算の実行が比較的容易なため、接続形式は使われ続けている。 また、物理学でも、接続形式は(gauge covariant derivative)を通して、ゲージ理論の脈絡で広く使われている。 接続形式は、微分形式の行列のなすベクトルバンドルの各々の基底に結びついている。接続形式は、基底変換でレヴィ・チヴィタ接続のクリストッフェル記号と同一な方法で、変換写像(transition functions)の外微分である変換をする。接続形式の主なテンソル的な不変量は、接続形式の曲率形式である。接バンドルとベクトルバンドルを同一視する(solder form)〔日本語では、「接合」"Solder"という用語はあまり使われないようである.しかし、標構(frame)が与えられたときの「標準 1-形式」「標準一次形式」という用語で使われている。〕があるときは、別の不変量があり、捩れ率形式と言われる。多くの場合、接続形式は、ベクトルバンドルに構造群がリー群であるファイバーバンドルの構造を付加したものと考えられる。
==ベクトルバンドル==
===準備===
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「接続形式」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|