|
関数解析学および関連する数学の分野における数列空間(すうれつくうかん、)とは、実数あるいは複素数の無限列を元とするベクトル空間のことを言う。またそれと同値であるが、自然数から実あるいは複素数体 K への関数を元とする関数空間のことでもある。そのような関数すべてからなる集合は、K に元を持つ無限列すべてからなる集合であると自然に認識され、関数のの和および点ごとのスカラー倍の作用の下で、ベクトル空間と見なされる。すべての数列空間は、この空間の線型部分空間である。通常、数列空間はノルムを備えるものであり、そうでなくとも少なくとも位相ベクトル空間の構造を備えている。 解析学におけるもっとも重要な数列空間のクラスは、''p''-乗総和可能数列からなる関数空間 ℓ''p'' である。それらの空間は ''p''-ノルムを備え、自然数の集合上の数え上げ測度に対するL''p''空間の特別な場合と見なされる。収束列や零列のような他の重要な数列のクラスも数列空間を構成し、それらの場合はそれぞれ ''c'' および ''c''0 と表記され、上限ノルムが備えられる。任意の数列空間は各点収束の位相を備えるものでもあり、その位相の下でのそれらの空間は、と呼ばれるフレシェ空間の特殊な場合となる。 == 定義 == を体(特に実または複素数全体の成す体)とし、各項が に値をとる数列(スカラー列)全体の成す集合 は、数列の和およびスカラー倍を * * と定めることによりベクトル空間を成す。このベクトル空間 の線型部分空間を一般に数列空間と呼ぶ。 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「数列空間」の詳細全文を読む スポンサード リンク
|