翻訳と辞書 |
無限降下法[むげんこうかほう] 数学における無限降下法(むげんこうかほう、infinite descent)とは、自然数が整列集合であるという性質を利用した、証明の一手法である。背理法の一種であり、数学的帰納法の一型とも見なせる。17世紀の数学者ピエール・ド・フェルマーが創始者であり、彼はこの証明法を好んで用いた。 == 概要 == 自然数に関する命題の証明に威力を発する場合があり、典型的には不定方程式に自然数解が存在しないことを示す際に用いられる。具体的には、自然数解が存在すると仮定し、ひとつの解から(ある意味で)より「小さい」別の自然数解が構成できることを示すのである。その構成法より、小さい解を次々に得ることができるはずであるが、自然数には最小のものがあるから、これは矛盾である。よって、仮定が間違っていたのであり、解が存在しないことが示されたことになる。小さい解を次々に得る様子が「無限に降下」していくように感じられることから、「無限降下法」と呼ばれる。 この証明は次のように書き換えることもできる。解が存在するとすると、最も「小さい」ものが存在する。先の構成法から、より小さいものが得られるが、これは最も「小さい」という仮定に矛盾する。よって、解は存在しない。 この証明のポイントは、最も「小さい」ものが存在するはずの、性質の良い「大小関係」を考えることである。必ずしも解そのものの大小関係である必要はなく、解に対してある自然数を対応させる関数の値の大小関係であれば十分である。
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「無限降下法」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|