翻訳と辞書 |
同型定理[どうけいていり] 数学、特に抽象代数学において、同型定理 (isomorphism theorems) は商、準同型、の間の関係を描く3つの定理である。定理のバージョンは群、環、ベクトル空間、加群、リー環、そして様々な他の代数的構造に対して存在する。普遍代数学において、同型定理は代数と合同の文脈に一般化することができる。 == 歴史 == 同型定理は加群の準同型に対してEmmy Noetherによって Mathematische Annalen に 1927 年に出版された彼女の論文 ''Abstrakter Aufbau der Idealtheorie in algebraischen Zahl- und Funktionenkörpern'' においていくらか一般的に定式化された。これらの定理のより一般的でないバージョンは Richard Dedekind の仕事や Noether による前の論文において見つけられる。 3年後、B.L. van der Waerden は彼の大きな影響を及ぼした ''Algebra''、主題への 群-環-体 アプローチをとった最初の抽象代数学の教科書を出版した。Van der Waerden は群論に関する Noether の講義と代数学に関する Emil Artin の講義を、また Wilhelm Blaschke, Otto Schreier, そして van der Waerden 自身によって行われたイデアルに関するセミナーを、主なリファレンスとして信用した。''準同型定理''と呼ばれる3つの同型定理と''同型の2つの法則''は群に適用されたとき明示的に現れる。
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「同型定理」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|