|
自発的対称性の破れ(じはつてきたいしょうせいのやぶれ、spontaneous symmetry breaking)とは、ある対称性をもった系がエネルギー的に安定な真空に落ち着くことで、より低い対称性の系へと移る現象やその過程を指す。類義語に明示的対称性の破れや量子異常による対称性の破れ、またこれらの起源の1つとしての力学的対称性の破れなどがある。 主に物性物理学、素粒子物理学において用いられる概念であり、前者では超伝導を記述するBCS理論でクーパー対ができる十分条件、後者では標準模型においてゲージ対称性を破り、ウィークボソンに質量を与えるヒッグス機構等に見ることができる。また、この他、磁気学における強磁性体の磁化についても発生の前後で自発的対称性の破れが考えられている。 ==メキシカン・ハット(ワイン・ボトル)型ポテンシャル== 理論物理学では場の対称性は全て作用(もしくはラグランジアン、ハミルトニアン)に含まれるとされる。特にラグランジアンのポテンシャル(相互作用)項は系の状態を如実に表す。自発的対称性の破れを起こすような模型のラグランジアンで最も簡単なものの1つは「メキシカン・ハット(ワイン・ボトル)型ポテンシャル」と呼ばれるものである。 いま複素スカラー場 が次のような運動項、ポテンシャル項 V(φ) をもつ系を考える。 : :: このとき μ、λ は任意の定数であり、θ の値を任意に変化させてもラグランジアン L は不変である(対称性がある)。スカラー場の基底状態(真空)はポテンシャルの安定点で決まるが、μ,λ>0 であるような場合の安定点は φ=0 ( )のみであり、ラグランジアンも真空も θ の値によらず対称性は破れない。 一方 μ<0,λ>0 の場合 : がより安定な基底状態(真空)となる。 このときラグランジアンには(図のポテンシャルの底の円周方向の回転に対応した) θ を 0 から 2π の間で動かすU(1)(回転)対称性が残っている。しかし系の真空にはある θ の値をもったポテンシャルの谷の一点が無作為に自然と選ばれるため、その点の周りでのU(1)(回転)対称性は壊れてしまっている。この現象を自発的対称性の破れと呼ぶ。 素粒子物理学のワインバーグ=サラム理論では、同様のポテンシャル(ただし、複素スカラー場は2つ)を考えることにより、ゲージ対称性 を に破り、ラグランジアンでは質量ゼロであったウィークボソンに質量を与えている。 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「自発的対称性の破れ」の詳細全文を読む スポンサード リンク
|