翻訳と辞書 |
調和関数[ちょうわかんすう]
数学における調和関数(ちょうわかんすう、)は、ラプラス方程式を満足する二回連続的微分可能な関数のことをいう。 調和関数に関する重要な問題はディリクレ問題である。ディリクレ問題の解決方法にはいくつかあるが、その中でも重要な一般的方法はディリクレの原理である。 20世紀には、、、小平邦彦らが調和積分論の発展の中心的な役割を果たした。 == 導入 == 物理学において生じる調和函数は、その特異点と(ディリクレ境界条件やノイマン境界条件などの)境界条件によって決定される。さらに、境界のない領域上では任意の整函数の実部または虚部が同じ特異点を持つ調和函数を与えるから、この場合調和函数をその特異点のみで決定することはできないが、物理学的な要請として解は無限遠において消えるものと仮定すれば、やはり一意的な解を得ることができる(この一意性はリウヴィルの定理による)。 このような調和函数の特異点は、電気力学の言葉で言えば「電荷」や「電荷密度」として解釈することができて、対応する調和函数はこの電荷分布に従う電位に比例するものと理解することができる。またそのような函数は定数倍したり、回転したり、定数を加えたりしても調和函数を与える。調和函数のもまた調和函数だが、特異点はもとの函数の(球面に関する)「鏡像」に写る。二つの調和函数の和も調和函数である。
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「調和関数」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|