|
s |- |bgcolor=#e7dcc3|Coxeter diagram |colspan=2| = |- |bgcolor=#e7dcc3|9-faces||532||20 512 |- |bgcolor=#e7dcc3|8-faces||5300||180 5120 |- |bgcolor=#e7dcc3|7-faces||24000||960 23040 |- |bgcolor=#e7dcc3|6-faces||64800||3360 61440 |- |bgcolor=#e7dcc3|5-faces||115584||8064 107520 |- |bgcolor=#e7dcc3|4-faces||142464||13440 129024 |- |bgcolor=#e7dcc3|Cells||122880||15360 107520 |- |bgcolor=#e7dcc3|Faces||61440|| |- |bgcolor=#e7dcc3|Edges||11520 |- |bgcolor=#e7dcc3|Vertices||512 |- |bgcolor=#e7dcc3|Vertex figure |colspan=2|Rectified 9-simplex 40px |- |bgcolor=#e7dcc3|Symmetry group |colspan=2|D10, () = () ()+ |- |bgcolor=#e7dcc3|Dual |colspan=2|? |- |bgcolor=#e7dcc3|Properties |colspan=2|convex |} In geometry, a demidekeract or 10-demicube is a uniform 10-polytope, constructed from the 10-cube with alternated vertices truncated. It is part of a dimensionally infinite family of uniform polytopes called demihypercubes. E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as HM10 for an 10-dimensional ''half measure'' polytope. Coxeter named this polytope as 171 from its Coxeter diagram, with a ring on one of the 1-length branches, and Schläfli symbol or . == Cartesian coordinates == Cartesian coordinates for the vertices of a demidekeract centered at the origin are alternate halves of the dekeract: : (±1,±1,±1,±1,±1,±1,±1,±1,±1,±1) with an odd number of plus signs. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「10-demicube」の詳細全文を読む スポンサード リンク
|