|
|- |bgcolor=#e7dcc3|Coxeter-Dynkin diagrams|| |- |bgcolor=#e7dcc3|9-faces||1024 |- |bgcolor=#e7dcc3|8-faces||5120 |- |bgcolor=#e7dcc3|7-faces||11520 |- |bgcolor=#e7dcc3|6-faces||15360 |- |bgcolor=#e7dcc3|5-faces||13440 |- |bgcolor=#e7dcc3|4-faces||8064 |- |bgcolor=#e7dcc3|Cells||3360 |- |bgcolor=#e7dcc3|Faces||960 25px |- |bgcolor=#e7dcc3|Edges||180 |- |bgcolor=#e7dcc3|Vertices||20 |- |bgcolor=#e7dcc3|Vertex figure||9-orthoplex |- |bgcolor=#e7dcc3|Petrie polygon||Icosagon |- |bgcolor=#e7dcc3|Coxeter groups||C10, () D10, () |- |bgcolor=#e7dcc3|Dual||10-cube |- |bgcolor=#e7dcc3|Properties||Convex |} In geometry, a 10-orthoplex or 10-cross polytope, is a regular 10-polytope with 20 vertices, 180 edges, 960 triangle faces, 3360 octahedron cells, 8064 5-cells ''4-faces'', 13440 ''5-faces'', 15360 ''6-faces'', 11520 ''7-faces'', 5120 ''8-faces'', and 1024 ''9-faces''. It has two constructed forms, the first being regular with Schläfli symbol , and the second with alternately labeled (checker-boarded) facets, with Schläfli symbol or Coxeter symbol 711. It is one of an infinite family of polytopes, called cross-polytopes or ''orthoplexes''. The dual polytope is the 10-hypercube or 10-cube. == Alternate names== *Decacross is derived from combining the family name ''cross polytope'' with ''deca'' for ten (dimensions) in Greek * Chilliaicositetraxennon as a 1024-facetted 10-polytope (polyxennon). 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「10-orthoplex」の詳細全文を読む スポンサード リンク
|