|
In five-dimensional geometry, a five-dimensional polytope or 5-polytope is a 5-dimensional polytope, bounded by (4-polytope) facets. Each polyhedral cell being shared by exactly two 4-polytope facets. ==Definition== A 5-polytope is a closed five-dimensional figure with vertices, edges, faces, and cells, and 4-faces. A vertex is a point where five or more edges meet. An edge is a line segment where four or more faces meet, and a face is a polygon where three or more cells meet. A cell is a polyhedron, and a 4-face is a 4-polytope. Furthermore, the following requirements must be met: # Each cell must join exactly two 4-faces. # Adjacent 4-faces are not in the same four-dimensional hyperplane. # The figure is not a compound of other figures which meet the requirements. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「5-polytope」の詳細全文を読む スポンサード リンク
|