|
s |- |bgcolor=#e7dcc3|Coxeter diagram |colspan=2| = |- |bgcolor=#e7dcc3|Coxeter symbol |colspan=2|131 |- |bgcolor=#e7dcc3|5-faces||44||12 32 |- |bgcolor=#e7dcc3|4-faces||252||60 192 |- |bgcolor=#e7dcc3|Cells||640||160 480 |- |bgcolor=#e7dcc3|Faces||640|| |- |bgcolor=#e7dcc3|Edges||colspan=2|240 |- |bgcolor=#e7dcc3|Vertices||colspan=2|32 |- |bgcolor=#e7dcc3|Vertex figure |colspan=2|Rectified 5-simplex 40px |- |bgcolor=#e7dcc3|Symmetry group |colspan=2|D6, () = () ()+ |- |bgcolor=#e7dcc3|Petrie polygon |colspan=2|decagon |- |bgcolor=#e7dcc3|Properties |colspan=2|convex |} In geometry, a 6-demicube or demihexteract is a uniform 6-polytope, constructed from a ''6-cube'' (hexeract) with alternated vertices truncated. It is part of a dimensionally infinite family of uniform polytopes called demihypercubes. E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as HM6 for a 6-dimensional ''half measure'' polytope. Coxeter named this polytope as 131 from its Coxeter diagram, with a ring on one of the 1-length branches, . It can named similarly by a 3-dimensional exponential Schläfli symbol or . == Cartesian coordinates == Cartesian coordinates for the vertices of a demihexeract centered at the origin are alternate halves of the hexeract: : (±1,±1,±1,±1,±1,±1) with an odd number of plus signs. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「6-demicube」の詳細全文を読む スポンサード リンク
|