|
|- |bgcolor=#e7dcc3|Coxeter-Dynkin diagrams|| |- |bgcolor=#e7dcc3|5-faces||64 |- |bgcolor=#e7dcc3|4-faces||192 |- |bgcolor=#e7dcc3|Cells||240 |- |bgcolor=#e7dcc3|Faces||160 |- |bgcolor=#e7dcc3|Edges||60 |- |bgcolor=#e7dcc3|Vertices||12 |- |bgcolor=#e7dcc3|Vertex figure||5-orthoplex |- |bgcolor=#e7dcc3|Petrie polygon||dodecagon |- |bgcolor=#e7dcc3|Coxeter groups||B6, () D6, () |- |bgcolor=#e7dcc3|Dual||6-cube |- |bgcolor=#e7dcc3|Properties||convex |} In geometry, a 6-orthoplex, or 6-cross polytope, is a regular 6-polytope with 12 vertices, 60 edges, 160 triangle faces, 240 tetrahedron cells, 192 5-cell ''4-faces'', and 64 ''5-faces''. It has two constructed forms, the first being regular with Schläfli symbol , and the second with alternately labeled (checkerboarded) facets, with Schläfli symbol or Coxeter symbol 311. It is a part of an infinite family of polytopes, called cross-polytopes or ''orthoplexes''. The dual polytope is the 6-hypercube, or hexeract. == Alternate names== *Hexacross, derived from combining the family name cross polytope with ''hex'' for six (dimensions) in Greek. * Hexacontitetrapeton as a 64-facetted 6-polytope. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「6-orthoplex」の詳細全文を読む スポンサード リンク
|