|
s |- |bgcolor=#e7dcc3|Coxeter diagram |colspan=2| = |- |bgcolor=#e7dcc3|6-faces||78||14 64 |- |bgcolor=#e7dcc3|5-faces||532||84 448 |- |bgcolor=#e7dcc3|4-faces||1624||280 1344 |- |bgcolor=#e7dcc3|Cells||2800||560 2240 |- |bgcolor=#e7dcc3|Faces||2240|| |- |bgcolor=#e7dcc3|Edges||colspan=2|672 |- |bgcolor=#e7dcc3|Vertices||colspan=2|64 |- |bgcolor=#e7dcc3|Vertex figure |colspan=2|Rectified 6-simplex 40px |- |bgcolor=#e7dcc3|Symmetry group |colspan=2|D7, () = () ()+ |- |bgcolor=#e7dcc3|Dual |colspan=2|? |- |bgcolor=#e7dcc3|Properties |colspan=2|convex |} In geometry, a demihepteract or 7-demicube is a uniform 7-polytope, constructed from the 7-hypercube (hepteract) with alternated vertices truncated. It is part of a dimensionally infinite family of uniform polytopes called demihypercubes. E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as HM7 for a 7-dimensional ''half measure'' polytope. Coxeter named this polytope as 141 from its Coxeter diagram, with a ring on one of the 1-length branches, and Schläfli symbol or . == Cartesian coordinates == Cartesian coordinates for the vertices of a demihepteract centered at the origin are alternate halves of the hepteract: : (±1,±1,±1,±1,±1,±1,±1) with an odd number of plus signs. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「7-demicube」の詳細全文を読む スポンサード リンク
|