|
|- |bgcolor=#e7dcc3|Coxeter-Dynkin diagrams|| |- |bgcolor=#e7dcc3|6-faces||128 |- |bgcolor=#e7dcc3|5-faces||448 |- |bgcolor=#e7dcc3|4-faces||672 |- |bgcolor=#e7dcc3|Cells||560 |- |bgcolor=#e7dcc3|Faces||280 |- |bgcolor=#e7dcc3|Edges||84 |- |bgcolor=#e7dcc3|Vertices||14 |- |bgcolor=#e7dcc3|Vertex figure||6-orthoplex |- |bgcolor=#e7dcc3|Petrie polygon||tetradecagon |- |bgcolor=#e7dcc3|Coxeter groups||C7, () D7, () |- |bgcolor=#e7dcc3|Dual||7-cube |- |bgcolor=#e7dcc3|Properties||convex |} In geometry, a 7-orthoplex, or 7-cross polytope, is a regular 7-polytope with 14 vertices, 84 edges, 280 triangle faces, 560 tetrahedron cells, 672 5-cells ''4-faces'', 448 ''5-faces'', and 128 ''6-faces''. It has two constructed forms, the first being regular with Schläfli symbol , and the second with alternately labeled (checkerboarded) facets, with Schläfli symbol or Coxeter symbol 411. It is a part of an infinite family of polytopes, called cross-polytopes or ''orthoplexes''. The dual polytope is the 7-hypercube, or hepteract. == Alternate names== * Heptacross, derived from combining the family name ''cross polytope'' with ''hept'' for seven (dimensions) in Greek. * Hecatonicosoctaexon as a 128-facetted 7-polytope (polyexon). 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「7-orthoplex」の詳細全文を読む スポンサード リンク
|