|
|- |bgcolor=#e7dcc3|Coxeter-Dynkin diagrams|| |- |bgcolor=#e7dcc3|7-faces||256 |- |bgcolor=#e7dcc3|6-faces||1024 |- |bgcolor=#e7dcc3|5-faces||1792 |- |bgcolor=#e7dcc3|4-faces||1792 |- |bgcolor=#e7dcc3|Cells||1120 |- |bgcolor=#e7dcc3|Faces||448 |- |bgcolor=#e7dcc3|Edges||112 |- |bgcolor=#e7dcc3|Vertices||16 |- |bgcolor=#e7dcc3|Vertex figure||7-orthoplex |- |bgcolor=#e7dcc3|Petrie polygon||hexadecagon |- |bgcolor=#e7dcc3|Coxeter groups||C8, () D8, () |- |bgcolor=#e7dcc3|Dual||8-cube |- |bgcolor=#e7dcc3|Properties||convex |} In geometry, an 8-orthoplex or 8-cross polytope is a regular 8-polytope with 16 vertices, 112 edges, 448 triangle faces, 1120 tetrahedron cells, 1792 5-cells ''4-faces'', 1792 ''5-faces'', 1024 ''6-faces'', and 256 ''7-faces''. It has two constructive forms, the first being regular with Schläfli symbol , and the second with alternately labeled (checkerboarded) facets, with Schläfli symbol or Coxeter symbol 511. It is a part of an infinite family of polytopes, called cross-polytopes or ''orthoplexes''. The dual polytope is an 8-hypercube, or octeract. == Alternate names == * Octacross, derived from combining the family name ''cross polytope'' with ''oct'' for eight (dimensions) in Greek * Diacosipentacontahexazetton as a 256-facetted 8-polytope (polyzetton) 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「8-orthoplex」の詳細全文を読む スポンサード リンク
|