|
s |- |bgcolor=#e7dcc3|Coxeter-Dynkin diagram |colspan=2| = |- |bgcolor=#e7dcc3|8-faces||274||18 256 |- |bgcolor=#e7dcc3|7-faces||2448||144 2304 |- |bgcolor=#e7dcc3|6-faces||9888||672 9216 |- |bgcolor=#e7dcc3|5-faces||23520||2016 21504 |- |bgcolor=#e7dcc3|4-faces||36288||4032 32256 |- |bgcolor=#e7dcc3|Cells||37632||5376 32256 |- |bgcolor=#e7dcc3|Faces||21504|| |- |bgcolor=#e7dcc3|Edges||4608|| |- |bgcolor=#e7dcc3|Vertices||256|| |- |bgcolor=#e7dcc3|Vertex figure |colspan=2|Rectified 8-simplex 40px |- |bgcolor=#e7dcc3|Symmetry group |colspan=2|D9, () = () ()+ |- |bgcolor=#e7dcc3|Dual |colspan=2|? |- |bgcolor=#e7dcc3|Properties |colspan=2|convex |} In geometry, a demienneract or 9-demicube is a uniform 9-polytope, constructed from the 9-cube, with alternated vertices truncated. It is part of a dimensionally infinite family of uniform polytopes called demihypercubes. E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as HM9 for an 9-dimensional ''half measure'' polytope. Coxeter named this polytope as 161 from its Coxeter diagram, with a ring on one of the 1-length branches, and Schläfli symbol or . ==Cartesian coordinates== Cartesian coordinates for the vertices of a demienneract centered at the origin are alternate halves of the enneract: : (±1,±1,±1,±1,±1,±1,±1,±1,±1) with an odd number of plus signs. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「9-demicube」の詳細全文を読む スポンサード リンク
|