翻訳と辞書
Words near each other
・ A-site
・ A-sound
・ A-Space
・ A-Space (community center)
・ A-Square
・ A-Studio
・ A-Sun (singer)
・ A-SUN Energy
・ A-Day (University of Alabama)
・ A-dec
・ A-DNA
・ A-do
・ A-dos-Ruivos
・ A-E gas field
・ A-Eiropa
A-equivalence
・ A-esterase
・ A-F Records
・ A-Film
・ A-flat
・ A-flat major
・ A-flat minor
・ A-Force
・ A-frame
・ A-frame complex
・ A-frame house
・ A-G for Hong Kong v Reid
・ A-G of Belize v Belize Telecom Ltd
・ A-G v Blake
・ A-G v Davy


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

A-equivalence : ウィキペディア英語版
A-equivalence
In mathematics, \mathcal-equivalence, sometimes called right-left equivalence, is an equivalence relation between map germs.
Let M and N be two manifolds, and let f, g : (M,x) \to (N,y) be two smooth map germs. We say that f and g are \mathcal-equivalent if there exist diffeomorphism germs \phi : (M,x) \to (M,x) and \psi : (N,y) \to (N,y) such that \psi \circ f = g \circ \phi.
In other words, two map germs are \mathcal-equivalent if one can be taken onto the other by a diffeomorphic change of co-ordinates in the source (i.e. M) and the target (i.e. N).
Let \Omega(M_x,N_y) denote the space of smooth map germs (M,x) \to (N,y). Let \mbox(M_x) be the group of diffeomorphism germs (M,x) \to (M,x) and
\mbox(N_y) be the group of diffeomorphism germs (N,y) \to (N,y). The group G := \mbox(M_x) \times \mbox(N_y) acts on \Omega(M_x,N_y) in the natural way: (\phi,\psi) \cdot f = \psi^ \circ f \circ \phi. Under this action we see that the map germs f, g : (M,x) \to (N,y) are \mathcal-equivalent if, and only if, g lies in the orbit of f, i.e. g \in \mbox_G(f) (or vice versa).
A map germ is called stable if its orbit under the action of G := \mbox(M_x) \times \mbox(N_y) is open relative to the Whitney topology. Since \Omega(M_x,N_y) is an infinite dimensional space metric topology is no longer trivial. Whitney topology compares the differences in successive derivatives and gives a notion of proximity within the infinite dimensional space. A base for the open sets of the topology in question is given by taking k-jets for every k and taking open neighbourhoods in the ordinary Euclidean sense. Open sets in the topology are then unions of
these base sets.
Consider the orbit of some map germ orb_G(f). The map germ f is called simple if there are only finitely many other orbits in a neighbourhood of each of its points. Vladimir Arnold has shown that the only simple singular map germs (\mathbb^n,0) \to (\mathbb,0) for 1 \le n \le 3 are the infinite sequence A_k (k \in \mathbb), the infinite sequence D_ (k \in \mathbb), E_6, E_7, and E_8.
==See also==

* K-equivalence (contact equivalence)

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「A-equivalence」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.