翻訳と辞書
Words near each other
・ Aeroflot Flight 8641
・ Aeroflot Flight 892
・ Aeroflot Flight 902
・ Aeroflot Flight 964
・ Aeroflot Flight 99
・ Aeroflot Open
・ Aeroflot-Cargo
・ Aeroflot-Plus
・ Aeroflying Sensation
・ Aeroford
・ Aeroframe Services
・ Aerofreight Airlines
・ Aerogard
・ AeroGauge
・ Aerogaviota
Aerogel
・ Aerogem Aviation
・ Aeroglen, Queensland
・ Aerograd
・ Aerogram
・ Aerograph
・ Aerographene
・ Aerographer's mate
・ Aerographite
・ Aerography
・ Aerography (arts)
・ Aerography (meteorology)
・ Aerogravity assist
・ AeroGroup
・ Aerohive Networks


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Aerogel : ウィキペディア英語版
Aerogel

Aerogel is a synthetic porous ultralight material derived from a gel, in which the liquid component of the gel has been replaced with a gas. The result is a solid with extremely low density and low thermal conductivity. Nicknames include ''frozen smoke'', ''solid smoke'', ''solid air'', or ''blue smoke'' owing to its translucent nature and the way light scatters in the material. It feels like fragile expanded polystyrene to the touch. Aerogels can be made from a variety of chemical compounds.
Aerogel was first created by Samuel Stephens Kistler in 1931, as a result of a bet with Charles Learned over who could replace the liquid in "jellies" with gas without causing shrinkage.〔

Aerogels are produced by extracting the liquid component of a gel through supercritical drying. This allows the liquid to be slowly dried off without causing the solid matrix in the gel to collapse from capillary action, as would happen with conventional evaporation. The first aerogels were produced from silica gels. Kistler's later work involved aerogels based on alumina, chromia and tin dioxide. Carbon aerogels were first developed in the late 1980s.
Aerogel does not have a designated material with set chemical formula but the term is used to group all the material with a certain geometric structure.〔

==Properties==

Despite their name, aerogels are solid, rigid, and dry materials that do not resemble a gel in their physical properties: The name comes from the fact that they are made from gels. Pressing softly on an aerogel typically does not leave even a minor mark; pressing more firmly will leave a permanent depression. Pressing extremely firmly will cause a catastrophic breakdown in the sparse structure, causing it to shatter like glass – a property known as ''friability''; although more modern variations do not suffer from this. Despite the fact that it is prone to shattering, it is very strong structurally. Its impressive load bearing abilities are due to the dendritic microstructure, in which spherical particles of average size (2–5 nm) are fused together into clusters. These clusters form a three-dimensional highly porous structure of almost fractal chains, with pores just under 100 nm. The average size and density of the pores can be controlled during the manufacturing process.
Aerogel is a material that is 98.2% air. The lack of solid material allows aerogel to be almost weightless. The reason for the difference in the composition is the structure of the aerogel. Aerogel has a porous solid network that contains air pockets, with the air pockets taking up majority of space within the material.
Aerogels are good thermal insulators because they almost nullify two of the three methods of heat transfer (convection, conduction, and radiation). They are good conductive insulators because they are composed almost entirely from a gas, and gases are very poor heat conductors. Silica aerogel is especially good because silica is also a poor conductor of heat (a metallic aerogel, on the other hand, would be less effective). They are good convective inhibitors because air cannot circulate through the lattice. Aerogels are poor radiative insulators because infrared radiation (which transfers heat) passes through silica aerogel.
Owing to its hygroscopic nature, aerogel feels dry and acts as a strong desiccant. People handling aerogel for extended periods should wear gloves to prevent the appearance of dry brittle spots on their skin.
The slight color it does have is due to Rayleigh scattering of the shorter wavelengths of visible light by the nano-sized dendritic structure. This causes it to appear smoky blue against dark backgrounds and yellowish against bright backgrounds.
Aerogel is an open porous network. The difference between an open porous network and a closed porous network is that an open porous network allows gases to enter and leave the substance without any limitation, while a closed porous network traps the gases within the material.
〔http://energy.lbl.gov/ecs/aerogels/sa-pore.htm〕
Aerogels by themselves are hydrophilic, but chemical treatment can make them hydrophobic. If they absorb moisture they usually suffer a structural change, such as contraction, and deteriorate, but degradation can be prevented by making them hydrophobic. Aerogels with hydrophobic interiors are less susceptible to degradation than aerogels with only an outer hydrophobic layer, even if a crack penetrates the surface. Hydrophobic treatment facilitates processing because it allows the use of a water jet cutter.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Aerogel」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.