|
In structural geology, an anticline is a fold that is convex up and has its oldest beds at its core. The term is not to be confused with ''antiform'', which is a purely descriptive term for any fold that is convex up. Therefore, if age relationships between various strata are unknown, the term antiform should be used. On a geologic map, anticlines are usually recognized by a sequence of rock layers that are progressively older toward the center of the fold because the uplifted core of the fold is preferentially eroded to a deeper stratigraphic level relative to the topographically lower flanks. The strata dip away from the center, or ''crest'', of the fold. If an anticline plunges (i.e., is inclined to the Earth's surface), the surface strata will form ''V''s that point in the direction of plunge. Anticlines are often flanked by synclines although faulting can complicate and obscure the relationship between the two. Folds often form during crustal deformation as the result of shortening that accompanies orogenic mountain building. In many cases anticlines are formed by movement on non-planar faults during both shortening and extension, such as ''ramp anticlines'' and rollover anticlines. ==Anticline terminology== Any fold whose form is convex upward is an antiform. Antiforms containing progressively younger rocks from their core outwards are anticlines. An anticline or antiform has a ''crest'', which is the highest point on a given stratum along the top of the fold. A ''hinge'' in an anticline is the locus of maximum curvature or bending in a given stratum in the fold. An ''axis'' is an imaginary line connecting the hinges in the different strata in a two-dimensional cross-section through the anticline. Connecting the hinges or points of maximum curvature in the different layers in three dimensions produces an ''axial plane'' or ''axial surface.'' In a symmetrical anticline, a surface trace of the axial plane coincides with the crest. With an asymmetrical anticline, the surface trace of the axial plane or axis will be offset from the crest toward the steeper flank of the fold. An ''overturned anticline'' is an asymmetrical anticline with a flank or limb that has been tilted beyond perpendicular so that the beds in that limb are upside-down. A structure that plunges in all directions to form a circular or elongate structure is a dome. Domes are generally formed from one main deformation event, or via diapirism from underlying magmatic intrusions or movement of upwardly mobile, mechanically ductile material such as rock salt (salt dome) and shale (shale diapir). The Richat Structure of the Sahara is considered a dome that has been laid bare by erosion. An anticline which plunges at both ends is termed a ''doubly plunging anticline'', and may be formed from multiple deformations, or superposition of two sets of folds, or be related to the geometry of the underlying detachment fault and the varying amount of displacement along the surface of that detachment fault. The highest point on a doubly plunging anticline (or any geologic structure for that matter) is called the "culmination." An elongate dome which developed as the sediments were being deposited is referred to as a ''pericline''. An ''anticlinorium'' is a series of anticlinal folds on a regional-scale anticline. Examples include the Late Jurassic to Early Cretaceous Purcell Anticlinorium in British Columbia〔(The Purcell Anticlinorium )〕 and the Blue Ridge anticlinorium of northern Virginia and Maryland in the Appalachians,〔Harris, Leonard D., ''Similarities between the thick-skinned Blue Ridge anticlinorium and the thin-skinned Powell Valley anticline,'' Geological Society of America Bulletin, 1979 v.90, no. 6, pp. 525-539 (Abstract )〕 or the Nittany Valley in central Pennsylvania. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Anticline」の詳細全文を読む スポンサード リンク
|